

CHARACTER ANIMATION

WITH DIRECT3D®

CARL GRANBERG

Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States

Charles River Media

A part of Course Technology, Cengage Learning

© 2009 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Microsoft, Windows, Direct3D, and DirectX are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other
countries. All other trademarks are the property of their respective owners.

Library of Congress Control Number: 2008931080

ISBN-13: 978-1-58450-570-9

ISBN-10: 1-58450-570-2

Course Technology, a part of Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at: international.
cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Character Animation with Direct3D®

Carl Granberg

Publisher and General Manager,
Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Content Project Manager:
Jessica McNavich

Marketing Manager: Jordan Casey

Senior Acquisitions Editor: Emi Smith

Project Editor and Copy Editor:
Dan Foster, Scribe Tribe

Technical Reviewer: Henrik Enqvist

CRM Editorial Services Coordinator:
Jennifer Blaney

Editorial Services Coordinator: Jen Blaney

Interior Layout: Jill Flores

Cover Designer: Mike Tanamachi

CD-ROM Producer: Brandon Penticuff

Indexer: Valerie Haynes Perry

Proofreader: Ruth Saavedra and
Mike Beady

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

eISBN-10: 1-58450-630-X

To Aino… again.

About the Author

Carl Granberg has been creating games on a hobby basis since the old DOS-based
Mode 13h graphics, after which he moved on to DirectDraw and finally Direct3D
graphics. He received his master of science in computing at Curtin University, Perth,
Australia, and has since been working in the Finnish game industry for 3 years.

He is currently working as a Tools programmer at Remedy Entertainment in
Finland. He’s also involved with a group of hobby game developers that goes by
the name of BugFactory (www.bugfactory.fi), which has just released its first
title, The Tales of Bingwood.

For matters relating to this book, he can be contacted at carl@bugfactory.fi.

iv

Acknowledgments

As always with a project such as this, there’s a long list of people deserving my thanks.
Writing a book is not a small feat (yes, patting myself on the back), and it is also some-
thing I could not have done alone. So first off I must thank the people of Charles River
Media for wanting to publish this hunk of technical mumbo jumbo, and especially
Emi Smith, my editor. Big thanks also to Dan Foster, my project editor, and Henrik
Enqvist of Remedy Entertainment, my technical editor. Henrik also supplied the code
for the Inverse Kinematics chapter and the Wrinkle Maps example, for which I owe
him thanks.

Next I’d like to thank my friend Markus Tuppurainen for supplying some of
the art for this book—sketches and pixel characters—as well as for helping me
make the Soldier model.

Finally I’d like to thank my wife and my family for their support through this
last year, which has been challenging in many ways.

Last, but not least, thank you for buying this book. I hope you enjoy it and also
learn something from it.

www.bugfactory.fi

v

Contents

Introduction .xi

1 Introduction to Character Animation .1
What Is Character Animation? .2
A Brief History of Character Animation .2
Morphing Animation and Skeletal Animation .5
The Soldier .7
Coding Conventions .8
Conclusions .10
Further Reading .10

2 A Direct3D Primer .11
DirectX 9 versus DirectX 10 .12
STL and the D3DX Library .13
Setting Up a Project in Visual Studio Express 2008 15

VC++ Directories .15
Creating a New Project .17
Linking DirectX Libraries .18

Application Framework .19
WinMain .21
Creating the Window .22

Basic Rendering .24
Creating the DirectX Device .25
Direct3D Rendering Loop .26
Loading a Mesh .27

Loading an Effect .28
Rendering a Mesh with an Effect .30

Conclusions .32
Further Reading .32

3 Skinned Meshes .33
Skinned Meshes Overview .34
Bone Hierarchies .35

The D3DXFRAME Structure .37
Loading a Bone Hierarchy .40

The CreateFrame() Function .41
The CreateMeshContainer() Function .41
The DestroyFrame() Function .42
The DestroyMeshContainer() Function .42
The ID3DXAllocateHierarchy .42

Applying a Mesh to the Bone Hierarchy .47
Software Skinning Overview .49
Hardware Skinning Overview .49
Software Skinning Implementation .50
Hardware Skinning Implementation .59

Rendering Static Meshes in Bone Hierarchies 67
Conclusions .71
Chapter 3 Exercises .72
Further Reading .72

4 Skeletal Animation .73
Keyframe Animation .74
Animation Sets .76
The ID3DXAnimationController Interface .79

Loading the Animation Data .79
Multiple Animation Controllers .82
Conclusions .83
Chapter 4 Exercises .84

vi Contents

5 Advanced Skeletal Animation Techniques .85
The Track Structure .86
Blending Multiple Animations .88
Compressing Animation Sets .90
Animation Callback Events .92
Motion Capture (Mocap) .96

Optical Motion Capture Systems .97
Magnetic Motion Capture Systems .98
Mechanical Motion Capture Systems .99
Comparison of the Different Mocap Systems100
Lapland Studio Interview .101

Conclusions .107
Chapter 5 Exercises .107
Further Reading .107

6 Physics Primer .109
Introduction to Rigid Body Physics .110

Forces .111
The Effect of Forces on a Rigid Body .112
Quaternions .114

Describing the World .119
The Oriented Bounding Box Class .120

Physics Simulation .124
Position, Velocity, and Acceleration .126
The Particle .128
The Spring .131

Conclusions .134
Chapter 6 Exercises .135
Further Reading .135

Contents vii

7 Ragdoll Simulation .137
Introduction to the Bullet Physics Engine .139
Integrating the Bullet Physics Library .140

Download Bullet .140
Build the Bullet Libraries .141
Setting Up a Custom Direct3D Project .142
Hello btDynamicsWorld .144

Constraints .147
Constructing the Ragdoll .150
Updating the Character Mesh from the Ragdoll158

Getting a Bone’s Position from an OBB .159
Getting a Bone’s Orientation from an OBB 161
Updating the Bone Hierarchy .162

Conclusions .164
Chapter 7 Exercises .165

8 Morphing Animation .167
Basics of Morphing Animation .168

Using Multiple Morph Targets .170
Morphing Animation on the GPU .173

Custom Vertex Formats .174
Creating the Morph Vertex Declaration .177
The Morphing Vertex Shader .180

Combining Skeletal and Morphing Animation 183
Skeletal/Morphing Vertex Format .185
Skeletal/Morphing Vertex Shader .188

Conclusions .191
Chapter 8 Exercises .192

viii Contents

9 Facial Animation .193
Facial Animation Overview .194

Facial Expressions .194
The Eye of the Beholder .196
The Face Class .198

Loading Multiple Targets from One .X File 200
Extracting Meshes from a D3DXFRAME Hierarchy 201
Implementing the Face Class .202

The Face Controller Structure .205
Animation Channels .205

Face Factory .208
Conclusions .215
Chapter 9 Exercises .216

10 Making Characters Talk .217
Phonemes .218
Visemes .221
Basics of Speech Analysis .225
Sound Data .227

The WAVE Format .227
Automatic Lip-Syncing .232
Conclusions .234
Further Reading .235

11 Inverse Kinematics .237
Introduction to Inverse Kinematics .238
Solving the IK Problem .240
Look-At Inverse Kinematics .240
Two-Joint Inverse Kinematics .246
Conclusions .252
Chapter 11 Exercises .253
Further Reading .253

Contents ix

12 Wrinkle Maps .255

Introduction to Normal Mapping .256

What Are Normal Maps? .258

Encoding Normals as Color .261

Putting the Normal Map to Use .262

The TBN-Matrix .265

Converting a Mesh to Support Normal Mapping 265

The Normal Mapping Shader .270

Creating Normal Maps .277

Creating Normal Maps in Practice .280

Specular Highlight .281

Specular Maps .284

Wrinkle Maps .288

Conclusions .292

Chapter 12 Exercises .292

Further Reading .293

13 Crowd Simulation .295

Flocking Behaviors .296

Boids .297

Introduction to Crowd Simulation .304

Smart Objects .308

Following a Terrain .310

Conclusions .313

Chapter 13 Exercises .313

Further Reading .313

x Contents

14 Character Decals .315

Introduction to Decals .316

Picking a Hardware-Rendered Mesh .318

Creating Decal Geometry .325

Calculating the Exact Hit Position .328

Selecting Triangles for the Decal Mesh .330

Copying the Skinning Information .331

The CharacterDecal Class .337

Calculating Decal UV Coordinates .339

Conclusions .346

Chapter 14 Exercises .347

15 Hair Animation .349

Hair Representation .350

Hair Modeling .351

The Control Hair Class .352

The HairPatch Class .356

Growing the Hair .359

Rendering the Hair Patch .362

Creating a Haircut .367

Animating the Control Hairs .370

The Hair Class .373

Conclusions .376

Chapter 15 Exercises .377

Further Reading .377

Contents xi

16 Putting It All Together .379

Attaching the Head to the Body .380

The Character Class .387

Future Work .389

Character Level-of-Detail .390

Root Motion versus Non-Root Motion .392

Animation Trees/Animation Graph .393

Track Masks .395

Separate Mesh and Animation Files .395

Alan Wake Case Study .396

Interview with Sami Vanhatalo, Senior Technical Artist397

Interview with Henrik Enqvist, Animation Programmer402

Final Thoughts .408

Further Reading .408

Index .409

xii Contents

INTENDED AUDIENCE

This book is primarily aimed at teaching indie and hobby game developers how to
create character animation with Direct3D. Also, the seasoned professional game
developer may find some interesting things in this book.

You will need a solid understanding of the C++ programming language as well
as general object-oriented programming skills.

As for DirectX, you will need to know the very basics at least. In other words,
you will need to have completed at least an introductory book on DirectX before
starting this one.

On top of all these prerequisites, you should also have basic knowledge of the
High Level Shading Language (HLSL), since many of the effects done in this book
will use it.

If you feel that you can’t honestly say you meet these prerequisites, I suggest
you brush up on these topics before continuing with this book rather than trying to
learn them as you go. You will quite quickly be faced with some advanced topics,
and, if you are faced with them for the first time, they will be quite hard to handle
without trying to learn HLSL or similar topics as well.

But, hey, this is just my suggestion. After all, that certainly wasn’t how I learned
the stuff I know today.

USING THIS BOOK

This book has been divided into 16 chapters, each of which usually focuses on one
or a few related components. I aim to keep this book very “hands-on,” so a lot of
code will be covered throughout. You’re probably best off reading the book from
cover to cover, since a lot of stuff covered in the earlier chapters will be built upon
in later chapters.

Introduction

xiii

The topic of character animation is a very general one that can be applied to all
game genres. It doesn’t matter if you are making your own role-playing games
(RPG), real-time strategy games (RTS), first-person shooter games (FPS), or a
game from another genre. As long as you plan to include characters in your game,
you will benefit greatly from learning the topics covered in this book.

Because the topic is extremely code intensive, you won’t find most of the code
written out in full throughout this book. Rather, use the book as a manual to un-
derstand the code found on the accompanying CD-ROM. Also, if you have time I
suggest that you try to implement the topics covered here completely on your own,
and use the code provided only as guidelines or a helping hand. Even though this
might seem like a tedious waste of time, I can guarantee that it will greatly increase
your understanding of the different techniques (although, of course, I know that
95% of readers will pay no attention whatsoever to this recommendation).

To get to the fun stuff as soon as possible, I won’t waste time covering simple
things like basic Direct3D rendering, basic data structures, and so on. There are
more books available on these topics than absolutely necessary, so if you feel
you’re lacking in knowledge about basic DirectX programming, I suggest you go
and pick up such a book before getting back to this one. Also, I’ll rely heavily on
the Standard Template Library (STL) for all basic data structures such as vectors,
stacks, queues, etc. For all generic 3D math functions, mesh and texture loading,
and more, I will be using the D3DX library. This is a part of Direct3D and is a great
help when developing 3D applications (as you’ll soon see).

You’ll find all the examples on the CD-ROM together with their executables,
models, textures, and more. The examples are ordered according to the chapter
number and the example number. Usually the examples are fairly simple and
focus only on one specific thing. At the end of the book, however, there will be a
character that can walk, talk, collide with objects, fall, and more.

SYSTEM REQUIREMENTS

Windows Vista/Windows XP
DirectX SDK
Graphic card supporting Vertex and Pixelshader version 2.0
A decent processor
Not too little RAM

xiv Introduction

1

Introduction to Character
Animation

1

Hello, dear reader, and welcome to this book about character animation! I hope
you enjoy it and find it useful. In this chapter, I’ll start you off slow by looking at
character animation in general as well as a brief history of the same topic. You
won’t get to do any coding in this chapter, but toward the end I’ll include a brief
overview of the coding conventions used in this book. In this first chapter, you’ll
find the following:

What is character animation?
A brief history of character animation
Comparison of skeletal animation and morphing animation
Coding conventions

WHAT IS CHARACTER ANIMATION?

This somewhat silly question may seem pretty easy to answer at a first glance, but
is it really? Wikipedia defines it as follows:

“Character animation is a specialized area of the animation process concerning the
animation of one or more characters featured in an animated work.”

-Wikipedia

Animated work. Well, I guess games falls under that category. However, I
would probably have tried to define it along the lines of “Making a character move
in a realistic way.” Although, I suppose that better answers the question, “What is
the goal of character animation?”

Historically, characters were drawn (or pixeled) and animated by making
multiple pictures showing the character at a slightly different pose. These pictures
would then loop to give the impression of movement. With today’s video cards, it
is possible to have full three-dimensional characters and animate them with some
of the various techniques covered in this book.

New ways of animating character models pop up each year, pushing the evolu-
tion of the field forward. The techniques covered in this book are by no means
cutting edge; rather, they are the foundational techniques that all (or most) cutting-
edge technologies are based upon. Techniques such as skeletal animation, morphing,
ragdoll physic simulation, and inverse kinematics have already existed for a long time
(in terms of game evolution at least).

Still, at the end of this book you will have all the tools you need to create your
own game featuring realistic character animation.

A BRIEF HISTORY OF CHARACTER ANIMATION

Let’s start from the beginning! Say hello to one of the first well-known computer
game characters of our time: Pac-Man (Figure 1.1).

This 28 � 28 pixel character (developed by Namco) was released in Japan in
1980 and is still today the most famous arcade game of all time. This character
(looking more like a pizza missing a slice) slowly gave way to more humanoid
characters. Four years later, Sierra On-Line released Kings Quest: Quest for the
Crown, staring Sir Graham (Figure 1.2).

2 Character Animation with Direct3D

Chapter 1 Introduction to Character Animation 3

FIGURE 1.1
Pac-Man.

FIGURE 1.2
Sir Graham.

Sir Graham might not feature many more pixels than Pac-Man did, but at least
he was more colorful and had a great set of animations. Characters continued along
the same lines through the late ’80s, with steadily increasing pixel count and/or color.
In 1987, LucasArts developed its first version of the SCUMM engine (Script Creation
Utility for Maniac Mansion) and with it they released several adventure games,
including Maniac Mansion, Monkey Island, Loom, and many more. The characters of
this era (late ’80s to early ’90s) pretty much shared the same complexity—Figure 1.3
shows an example.

Suddenly the ’90s hit, and with the new decade the first 3D games brought a
whole new set of problems. Some of the more famous games included Wolfenstein
3D and, later, DOOM—although these games can’t really be called proper 3D games
since they still used 2D sprites for enemies and characters (usually drawn from eight
angles, depending on their orientation to the player). The first real 3D character was
seen in the game Alone in the Dark, which was released in 1992. It featured charac-
ters in full 3D with interpolated animations. These characters had an extremely low
polygon count and were built from several blocks (one for each limb). An example
character from this era can be seen in Figure 1.4.

You can easily see the obvious gaps between the joints in this character, but
back then there was usually no lighting of the models and the resolution was so
small that these gaps were often hidden from the player.

Jumping ahead in time a few years, we reach 1996, when 3dfx launched the first
Voodoo chipset and with it brought affordable 3D accelerator cards to the masses.
One of the first reputable games taking advantage of this new technology was the
game Quake. With Quake came seamless characters (albeit low-poly) animated
using vertex morphing.

4 Character Animation with Direct3D

FIGURE 1.3
An animation sequence of Tom (The Tales of Bingwood). © BugFactory 2008.

MORPHING ANIMATION AND SKELETAL ANIMATION

Morphing animation (or per-vertex animation) works by blending two (or more)
meshes together on a per-vertex basis. The two meshes need to have the same
amount of vertices, and their polygons need to be arranged in the same way for this
technique to work. Each mesh representing a pose of the character is referred to as
a morph target. More than one morph target may be used to blend the final mesh.
The main use of morphing animation these days is facial animation. But in the past
it was also used to create full-body character animations. For instance, the Quake I
and II engines used this approach for their characters using the popular but slightly
outdated MD2 file format [Schoenblum07, Leimbach02].

See Figure 1.5 for an example of morphing animation. In this figure, only the
HAPPY and ANGRY frames are the actual target meshes. The meshes in between
are created by interpolating the vertex positions smoothly over time.

Chapter 1 Introduction to Character Animation 5

FIGURE 1.4
A character built from blocks.

Fast-forwarding in time again brings us to 1998, when Sierra Studios released the
game Half-Life (developed by Valve). Half-Life was built on top of a highly modified
version of the Quake engine. Most notably, the game developers added a new skeletal
animation system, allowing them to reuse animations on different characters.

As the name implies, skeletal animation is closely linked to the workings of a
skeleton. An average human body has about 206 bones. The states and locations of
all these bones define the pose of a person. As the bones move from one location
in space to another, the surrounding muscles, tissue, and the outer skin move
with it. This basic idea is the key to skeletal animation. The only difference is that
for computer games you are just interested in the skin layer (i.e., what the player
sees). In Chapter 3, you will learn how to “skin a character.”

See Figure 1.6 for an example of the wireframe rendering of a skinned character.
Notice how the skin (mesh) follows the bones as they move.

Since the days of the first Half-Life game, characters have been getting more
polygons, larger textures, normal maps, advanced shaders, and more to make them
look better and better every year. However, the basic underlying technologies
haven’t changed much.

These two techniques—skeletal animation and morphing animation—are
widely used today in game development, and this book will cover both. They
both have their advantages and disadvantages. At the end of this book, you will
know how to create characters that make use of both techniques—e.g., skeletal
animation for overall movement, and morphing animation for more subtle
things like facial expressions.

6 Character Animation with Direct3D

FIGURE 1.5
An example of morphing animation.

THE SOLDIER

I will refer to the example character used throughout this book as “the Soldier.”
What looks like yet another futuristic-hero-figure-in-power-armor is…well, actually
just that: another futuristic-hero-figure-in-power-armor.

The design for the Soldier was based on old roman soldiers, which you might
detect from the shoulder pads and helmet.

Design and texturing for the Soldier was done by Markus Tuppurainen for our
adventure game, Day of Wrath. Although that game was never finished (yes, yes, I
don’t manage to finish all the games I start either), the model still has its uses for this
book. The important thing is that he has all the necessary limbs, some animations,
skinned meshes (body and face), and some static meshes (helmet and pulse rifle).

The model complexity ranges somewhere in the low to medium range by
today’s standards:

Body Mesh: 2100 Polygons

Head Mesh: 1000 Polygons

Num Bones: 26

Height: 1.8 Units

Chapter 1 Introduction to Character Animation 7

FIGURE 1.6
Three frames of a character animation using skeletal animation.

CODING CONVENTIONS

Throughout this book I will use a subset of the Hungarian notation standard (and
I’ll try to be consistent). The High Level Shading Language (HLSL) effects in this
book will depart slightly from this standard and use the notation used in Engel’s
shader books. See Table 1.1 for the coding conventions used in the C++ examples
of this book.

8 Character Animation with Direct3D

FIGURE 1.7
The Soldier.

So your average C++ class would look something like the following:

class SomeClass

{

public:

SomeClass();

~SomeClass();

void SomeFunction1(int someParameter);

bool SomeFunction2();

private:

int m_memberVariable;

float* m_pMemberPointer;

};

Chapter 1 Introduction to Character Animation 9

TABLE 1.1 CODING CONVENTIONS

Type Prefix Example

Class Names N/A class SomeClass{ … };

Function Names N/A void SomeFunction(int someParameter){ … }

Constant Names N/A const int CONSTANT_INTEGER = 32;

Member Variables m_ int m_someInteger;

Global Variables g_ float g_globalFloat;

Static Variables s_ char s_staticChar;

Pointer Variable p SomeClass* pPointerToObject;

Member Pointer m_p float* m_pMemberPointerToFloat;

10 Character Animation with Direct3D

CONCLUSIONS

Hopefully after reading this chapter you’ve gained some perspective on the topic of
character animation and the work in this field that has come before us. However,
after this brief warm-up, it is time to get started and to get your hands dirty. In the
next chapter, you’ll be briefly introduced to Direct3D as well as the necessary steps
to create a 3D application, most of which will probably be repetition for you. At the
end of the next chapter, you will have a character rendered to your screen (albeit a
very stiff one). Then, after Chapter 2, more functionality will be added to our now
somewhat inanimate Soldier in each chapter, bringing him more and more to life.

FURTHER READING

[Schoenblum07] Schoenblum, Daniel E. “.md2 File Format Specification.” Available
online at http://www.linux.ucla.edu/~phaethon/q3/formats/md2-schoenblum.html,
2007.

[Leimbach02] Leimbach, Johannes. “Character Animation with DirectX 8.0.”
Available online at http://www.gamedev.net/reference/articles/article1653.asp, 2002.

http://www.linux.ucla.edu/~phaethon/q3/formats/md2-schoenblum.html
http://www.gamedev.net/reference/articles/article1653.asp

11

A Direct3D Primer2

This chapter covers what you need to know before continuing with the rest of this
book, or, in other words…the groundwork. I’ll offer a quick glance at the things
you should already know (setting up Direct3D, the windows loop, and more). If
any of the concepts covered in this chapter don’t make sense, well, then you need
to take a break and brush up on these. As mentioned earlier, you will need to be
comfortable with both object-oriented C++ as well as DirectX 9. So before you
tackle the more savory subjects of this book, let’s look at the basics first. In this
chapter I’ll cover the application framework, creating the window, setting up the
Direct3D device, and more. However, since these subjects don’t really belong to the

core of this book, I will just brush past them and show you the minimum amount
of code required to get up and running. Pay special attention to the application
framework though, since this is the skeleton class upon which all the other
examples in this book are built. This chapter includes the following:

Getting started
Application framework
Rendering with Direct3D

Please note that all code throughout this book is written with clarity in mind, not
optimization (or stability). Also to keep things brief, no error checking is done. For
example, I rarely check the return values of Direct3D/D3DX functions but simply
assume that they completed successfully. Similarly I assume that there is enough
memory to create new classes, meshes, textures, etc. So please be mindful of this fact
if you plan to use the code from this book in your own projects.

DIRECTX 9 VERSUS DIRECTX 10

In this book I will use DirectX 9 to do all rendering and resource management. You
might ask, why?—the newer DirectX 10 is already out! Well, to be honest the amount
of extra work and support code required to cover the same topics in DirectX 10
simply makes it too grand a job to attempt. In DX9 a lot of support code exists in the
D3DX library, much of which has been deprecated in DX10 (to the disappointment
of us hobby programmers).

The biggest missing piece needed for this book is the loading of .x files (no, not
the TV series, but the file format used by DX9 to store models). At the writing of
this book, there’s still not any easy way of doing this with DX10. Anyway, if you
can write your own mesh importer, you probably don’t need my help to port the
examples in this book anyway, and if not, well, then DX9 will have to serve.

Another reason to stick with DX9 is that the majority of computers out there
still don’t have a DX10-compatible graphics card and probably won’t for at least
another couple of years.

However, no matter which version of DirectX you use to do your rendering, you
will still benefit from the lessons in this book. The classes and structures presented
in this book are nonspecific to DX9 and can easily be ported to other rendering
systems such as DX10 or even OpenGL.

12 Character Animation with Direct3D

STL AND THE D3DX LIBRARY

Reinventing the wheel is something that I greatly enjoy doing myself. I’ll spare you
this, however, since you might not have the same fetish. I’ll therefore rely heavily
on the Standard Template Library (STL) for all my data container classes and the
Direct3D eXtension (D3DX) Library for math functions, resource loading functions,
etc. Here’s a simple use of the stl::vector class, if you haven’t seen it before:

//Create a vector of integers

vector<int> intVector;

//push some numbers

intVector.push_back(3);

intVector.push_back(1);

intVector.push_back(2);

//Sum up the numbers in the vector

int sum = 0;

for(int i=0; i<intVector.size(); i++)

{

sum += intVector[i]; //Access each int with the [] operator

}

This is a pretty simple example demonstrating a vector of integers. It’s not very
useful in practice, however; it’s more common that you have a vector of pointers to
a user-defined class. Take a look at the following three classes:

//Monster Interface

class IMonster

{

public:

IMonster();

virtual void Update(float deltaTime) = 0;

virtual void Render() = 0;

protected:

D3DXVECTOR2 m_position;

};

//Your run o’ the mill savage goblin

class Goblin : public IMonster

{

Chapter 2 A Direct3D Primer 13

public:

Goblin(float startHealth);

void Update(float deltaTime);

void Render();

private:

float m_health;

};

//Your ghost on the attic (can be friendly or unfriendly)

class Ghost : public IMonster

{

public:

Ghost(bool isFriendly);

void Update(float deltaTime);

void Render();

private:

bool m_friendly;

};

The Ghost and the Goblin classes both inherit from the IMonster interface.
The functions Update() and Render() are declared in the IMonster class as purely
virtual functions that have to be implemented in the classes inheriting from it.
But you should know all this already. If not, you might want to brush up on
some basic object-oriented concepts like inheritance, polymorphism, etc.
[Llopis03]. Anyway, getting back to the STL vector, here’s how you would create,
update, and render a bunch of monsters:

//Create a vector of monster pointers

vector<IMonster*> monsters;

//create some monsters

monsters.push_back(new Goblin(55.0f));

monsters.push_back(new Goblin(35.0f));

monsters.push_back(new Ghost(true));

monsters.push_back(new Ghost(false));

monsters.push_back(new Goblin(62.0f));

//Iterate through the monsters and call update and render

for(int i=0; i<monsters.size(); i++)

14 Character Animation with Direct3D

{

monsters[i]->Update(deltaTime);

monsters[i]->Render();

}

The ghost and the goblin can have completely different updating and rendering
functions. However, since they both implement the IMonster interface, the monster
vector doesn’t care which exact class each item in the vector represents. You’ll see a
lot of STL containers used in similar ways throughout this book (vector, queue,
map, etc.).

That pretty much covers how I’ll be using the STL library. The D3DX library,
on the other hand, is a collection of functions, structures, and classes that will also
be richly used throughout this book. You can recognize the D3DX functions, etc. by
their prefix (yep, you guessed it) D3DX as seen in: D3DXMATRIX, D3DXVECTOR3,
D3DXVec3Normalize(), D3DXMatrixIdentity(), and much more. I’ll try to introduce
all these new functions as they are used in the book (instead of covering them all
here). Remember that you always have the DirectX SDK documentation where all
these functions and structures are covered in great detail.

SETTING UP A PROJECT IN VISUAL STUDIO EXPRESS 2008

If you already know how to set up a project in Visual Studio and get up and run-
ning with it, then feel free to skip this section.

DirectX applications are now quite simple to make for free with Visual Studio
Express 2008. If you have other versions of Visual Studio, the steps to set up a DirectX
project are the same. Note, however, that earlier versions of Visual Studio Express
such as 2005, etc. can’t build Win32 applications without some extra hassle. So unless
you own a copy of Visual Studio, you’re better off sticking to VS Express 2008.

You can download VS Express 2008 from:
http://www.microsoft.com/express/vc/.
Go ahead and install it. Next you need the DirectX SDK, found here:

http://msdn.microsoft.com/en-gb/directx/default.aspx.
Follow the DirectX SDK links and install this as well.

VC++ DIRECTORIES

When you build you’re project you’ll need header and library files from the Direct
SDK. To ensure that Visual Studio can find and link these files, follow these steps:

Chapter 2 A Direct3D Primer 15

http://www.microsoft.com/express/vc/
http://msdn.microsoft.com/en-gb/directx/default.aspx

1. Open up Visual Studio Express.
2. Click Tools, and then select Options.
3. Select “VC++ Directories” from the list at the left (under Project and

Solutions).
4. Select “Include Files” in the “Show directories for” drop-down box.
5. Make sure that a link to your DirectX Include folder exists in the list below;

if not, add one.
6. Now select “Library Files” in the “Show directories for” drop-down box.
7. Make sure that a link to your DirectX Lib (either x86 or x64, depending on

which platform you’re building for) folder exists in the list below; if not,
add one.

Figure 2.1 shows an example of the Options screen:

Setting up the VC++ directories only needs to be done once. The following,
however, needs to be done for each individual project.

16 Character Animation with Direct3D

FIGURE 2.1
The Visual Studio Options screen.

CREATING A NEW PROJECT

To create a new empty project in Visual Studio, follow these steps:

1. Select File > New > Project.
2. Select Win32 Project.
3. Enter a project name.
4. Select the project folder.
5. Press OK.

6. In the Application Wizard that pops up, click Next.
7. Select Windows Application as the Application Type.
8. Click “Empty Project” in Additional Options.
9. Click Finish.

Chapter 2 A Direct3D Primer 17

FIGURE 2.2
The New Project screen.

You have now created a new project. Before you can start to compile and
build DirectX applications, however, you need to link the DirectX libraries to your
application.

LINKING DIRECTX LIBRARIES

You need to tell the linker which external libraries your application will be using.
This may vary from project to project, of course, depending on what functionality
you intend to use. To add libraries to your application, follow these steps:

1. Select the project you are working on in the Solution Explorer (a solution
can contain more than one project).

2. Select Project > Properties (or press Alt + F7).
3. Expand the “Configuration Properties” node in the left tree view.
4. Expand the “Linker” node.
5. Select the “Input” node.
6. In the “Additional Dependencies” field, enter the filename of the libraries

you intend to use.

18 Character Animation with Direct3D

FIGURE 2.3
The Application Wizard.

For most of the examples in this book I will link only the following DirectX
libraries:

d3d9.lib DirectX Core Library

d3dx9.lib DirectX eXtension Library

That’s it! That pretty much covers the boring part. You are now ready to write,
compile, and build DirectX applications. Next I’ll show you the Application frame-
work you’ll be using throughout this book.

APPLICATION FRAMEWORK

Since you’ll be writing a Win32 application to run your game through, you’ll need a
class to deal with the main program loop, initialization of the graphics device, and
more. For this purpose I’ll use the Application class. Once again, keep in mind that I

Chapter 2 A Direct3D Primer 19

FIGURE 2.4
Project Property Pages.

20 Character Animation with Direct3D

do a minimum of error checking in this class to keep it light, so for any “advanced”
application, I would suggest the DXUT framework as a starting point (accompanying
the DirectX SDK). Bearing this in mind, here’s the overview of the Application class:

class Application

{

public:

Application();

~Application();

HRESULT Init(HINSTANCE hInstance, bool windowed);

void Update(float deltaTime);

void Render();

void Cleanup();

void Quit();

void DeviceLost();

void DeviceGained();

private:

HWND m_mainWindow;

D3DPRESENT_PARAMETERS m_present;

bool m_deviceLost;

};

A quite slim class, all in all. The functions’ names pretty much explain what
they do. After an Application class has been created, the Init() function must be
called. In this function, resources are loaded and the graphics device is created.

Each frame the Update() function is called with the delta time since the previous
frame, before the Render() function is called. The Update() function takes care of
updating the world (i.e., the game), moving objects, updating the physics engine,
and more. Once done, the Render() function renders all the objects and presents the
result to the screen.

The DeviceLost() and DeviceGained() functions require some explanation.
These functions are called when the device is lost or gained. This happens when the
window is resized or when the user switches from full screen to windowed mode, etc.
All resources stored in video memory need to be released on the device lost event
and recreated when the device is regained. (This again is stuff that you hopefully
know already and something this book won’t touch upon.)

Once the application has run its course and the Quit() function is called (done
by pressing Esc or Alt + F4 in the examples), the Cleanup() function is called and in
it any resources that were created are released. So how is the Application class used?

WINMAIN

For those who are already familiar with the basics of windows programming, I
apologize for the upcoming sections and beg you to skip ahead. For the rest of
you…read on.

The WinMain() function is the entry point of your Win32 program. It is in this
function that the entire application exists and runs its course. The following code
shows the simple WinMain() function you’ll be using for the upcoming examples:

int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE prevInstance,

PSTR cmdLine,

int showCmd)

{

//Create a new Application object

Application app;

//Initialize it

if(FAILED(app.Init(hInstance, true)))

return 0;

//Start the windows message loop

MSG msg;

memset(&msg, 0, sizeof(MSG));

//Keep track of the time

DWORD startTime = GetTickCount();

while(msg.message != WM_QUIT)

{

if(PeekMessage(&msg, 0, 0, 0, PM_REMOVE))

{

//If there's a message, deal with it and send it onward

TranslateMessage(&msg);

DispatchMessage(&msg);

}

else //Otherwise update the game

{

//Calculate the delta time

DWORD t = GetTickCount();

float deltaTime = (t - startTime) * 0.001f;

Chapter 2 A Direct3D Primer 21

//Update the application

app.Update(deltaTime);

//Render the application

app.Render();

startTime = t;

}

}

//Release all resources

app.Cleanup();

//... and Quit!

return (int)msg.wParam;

}

As you can see, I create an instance of the Application class at the beginning of
the WinMain() function. The Application instance is then updated and rendered each
frame as long as the message loop runs (no WM_QUIT message has been received).
Finally, the Cleanup() function is called, releasing any resources tied up by the
application before the WinMain() function returns and the program terminates.

Next let’s take a look at what happens in the Init() function of the Application
class!

CREATING THE WINDOW

In order to display your 3D world to the user, you first need to create a window. This
window can work like any other window running under Windows; you can resize it,
minimize, maximize, etc. The only thing I will use the window for in these examples
is to display the rendered 3D world each frame.

So to create a window you first need to create and register a window class by
filling out the WNDCLASS structure as shown:

//Create Window Class

WNDCLASS wc;

memset(&wc, 0, sizeof(WNDCLASS));

//Window Style

wc.style = CS_HREDRAW | CS_VREDRAW;

//Window Event Procedure (more on this later)

wc.lpfnWndProc = (WNDPROC)WndProc;

22 Character Animation with Direct3D

//The Application Instance

wc.hInstance = hInstance;

//The Window Class Name

wc.lpszClassName = "D3DWND";

//...Finally Register the new Window Class

RegisterClass(&wc);

There are of course a multitude of options available when registering a window
class. The code here just shows the minimum code required to get up and running.
Check out the Microsoft Developer Network (MSDN) for more info on how to
create windows, etc. One thing I need to explain here though is the lpfnWndProc
variable. The lpfn prefix stands for Long Pointer Function, or in other words a
function pointer. The window procedure handles all incoming events to the
window, and the user can specify what should happen at each event. The light-
weight window procedure used in this example looks like this:

LRESULT CALLBACK WndProc(HWND hwnd,

UINT msg,

WPARAM wParam,

LPARAM lParam)

{

//User specified events

switch(msg)

{

case WM_CREATE:

//Do some window initialization here

break;

case WM_DESTROY:

//Do some window cleanup here

PostQuitMessage(0);

break;

}

//Default events

return DefWindowProc(hwnd, msg, wParam, lParam);

}

Only the WM_CREATE and WM_DESTROY functions are being handled in this window
procedure. (See the MSDN for other events you can catch and handle in the window
procedure function.) Then I return the result of the DefWindowProc() function,

Chapter 2 A Direct3D Primer 23

which is basically the default procedure for all window events. After registering your
window class and assigning it a window procedure, you can create an instance of this
window type with the CreateWindow() function:

m_mainWindow = CreateWindow("D3DWND", //Window class to use

"Window Title", //Title

WS_EX_TOPMOST, //Style

0, //X

0, //Y

WINDOW_WIDTH, //Width

WINDOW_HEIGHT, //Height

NULL, //Parent window

NULL, //Menu

hInstance, //Application instance

0); //Param

//Display the new window

ShowWindow(m_mainWindow, SW_SHOW);

//Update it

UpdateWindow(m_mainWindow);

That’s all there is to it. You now have a window running and being updated.
There are plenty of resources and tutorials available on the Web about Win32
application programming. For this book it is enough if you have a general
understanding about how to create a window, the windows main loop and the
window procedure, etc. That pretty much takes care of the windows code…next
up, how to set up Direct3D!

BASIC RENDERING

In this section I’ll cover how to set up the Direct3D device and get something drawn
to the screen. The Direct3D Device is the interface you will use to draw objects to
the screen, create resources, and much more.

Since I do expect you to have some experience with Direct3D before tackling this
book, I will keep this section brief. Refer instead to the DirectX SDK documentation
or one of the many introductory books available if something is unclear. For an
introductory book on Direct3D game programming, I recommend Frank Luna’s
Introduction to 3D Game Programing with Direct X 9.0c: A Shader Approach [Luna06].

24 Character Animation with Direct3D

CREATING THE DIRECTX DEVICE

Initializing the Direct3D device is done with the following steps:

1. Create the Direct3D interface.
2. Fill out the D3DPRESENT_PARAMETERS structure.
3. Create the Direct3D Device.

Here’s the code for these steps:

//Create IDirect3D9 Interface

IDirect3D9* d3d9 = Direct3DCreate9(D3D_SDK_VERSION);

if(d3d9 == NULL)

{

//Could not create the Direct3D interface, exit...

}

//Set D3DPRESENT_PARAMETERS

D3DPRESENT_PARAMETERS present;

present.BackBufferWidth = WINDOW_WIDTH;

present.BackBufferHeight = WINDOW_HEIGHT;

present.BackBufferFormat = D3DFMT_A8R8G8B8;

present.BackBufferCount = 2;

present.MultiSampleType = D3DMULTISAMPLE_NONE;

present.MultiSampleQuality = 0;

present.SwapEffect = D3DSWAPEFFECT_DISCARD;

present.hDeviceWindow = m_mainWindow;

present.Windowed = windowed;

present.EnableAutoDepthStencil = true;

present.AutoDepthStencilFormat = D3DFMT_D24S8;

present.Flags = 0;

present.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;

present.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;

//Create the IDirect3DDevice9

d3d9->CreateDevice(D3DADAPTER_DEFAULT, //Primary Gfx card

D3DDEVTYPE_HAL, //Hardware rasterization

m_mainWindow, //Window to use

D3DCREATE_HARDWARE_VERTEXPROCESSING, //HW verts

&present, //Present parameters

&g_pDevice); //Resulting device

Chapter 2 A Direct3D Primer 25

if(g_pDevice == NULL)

{

//Could not create the Direct3D Device, exit...

}

//Release IDirect3D9 interface (you don’t need it anymore)

d3d9->Release();

This code will set up a Direct3D device, assuming that you have a graphics
card that supports hardware rasterization, hardware vertex processing, the selected
back buffer format, etc. I also store the finished Device as a global pointer so it can
be accessible from classes other than the Application class.

The Device output is now connected to the window created earlier. So if you
wanted to clear the background of the window to a certain color, you could use the
following code:

// Clear the viewport

g_pDevice->Clear(

0, //Num rectangles to clear

NULL, //Rectangles to clear (NULL = whole screen)

D3DCLEAR_TARGET, //Clear the render target

0xffffffff, //Color AARRGGBB (in this case White)

1.0f, //Clear Z-buffer to 1.0f

0); //Clear Stencil Buffer to 0

DIRECT3D RENDERING LOOP

The rendering loop of Direct3D is quite simple and is governed by three functions:
BeginScene(), EndScene(), and Present(). Between the BeginScene() and EndScene()
functions is where you can do your rendering/drawing, and once done you call
the Present() function to show the result to the screen. The Present() function
automatically takes care of the back buffer swapping, etc., so you don’t have to worry
about that.

// Clear the viewport

g_pDevice->Clear(...);

// Begin the scene

if(SUCCEEDED(g_pDevice->BeginScene()))

{

//Do your rendering here!

26 Character Animation with Direct3D

// End the scene.

g_pDevice->EndScene();

//Present the result

g_pDevice->Present(0, 0, 0, 0);

}

Passing zeros to all the Present() functions parameters displays the result to the
entire window—full screen, that is, which is what you’d want. For more info see the
DirectX SDK documentation. This has been a lot of initialization code to take in
now. Just stay with me a little while longer and you’ll have something actually
showing on the screen.

LOADING A MESH

In this chapter I’ll just load a static mesh so there’s something to render to the now
rather blank screen.

Meshes are stored and accessed through the ID3DXMesh interface, a class that
you’ll become more familiar with by the end of this book. For now, it is sufficient
that you know it holds a mesh or a model.

Throughout this book, I’ll use the .x format together with the mesh loading
functions available in the D3DX library, and to load a static mesh I’ll use the fol-
lowing function:

HRESULT D3DXLoadMeshFromX(

LPCTSTR pFilename, //Filename

DWORD Options, //Mesh option

LPDIRECT3DDEVICE9 pD3DDevice, //Direct3D device

LPD3DXBUFFER * ppAdjacency, //Mesh adjacency information

LPD3DXBUFFER * ppMaterials, //Materials

LPD3DXBUFFER * ppEffectInstances, //Effects

DWORD * pNumMaterials, //Number of materials

LPD3DXMESH * ppMesh //Resulting mesh

);

Since the .x format can also contain embedded materials and even shader
effects, the D3DXLoadMeshFromX() function also has parameters for returning these.
The following code uses this function to load a mesh from the hard drive into your
application:

Chapter 2 A Direct3D Primer 27

//Pointer that will hold the loaded mesh

ID3DXMesh *pMesh = NULL;

//Load new mesh

ID3DXBuffer * adjacencyBfr = NULL;

ID3DXBuffer * materialBfr = NULL;

DWORD noMaterials = NULL;

if(FAILED(D3DXLoadMeshFromX("someMesh.X",

D3DXMESH_MANAGED,

g_pDevice,

&adjacencyBfr,

&materialBfr,

NULL,

&noMaterials,

&pMesh)))

{

//Failed to load mesh... exit

}

D3DXMATERIAL *mtrls = (D3DXMATERIAL*)materialBfr->GetBufferPointer();

for(int i=0;i<(int)noMaterials;i++)

{

if(mtrls[i].pTextureFilename != NULL)

{

//Material has texture!

//Load the texture mtrls[i].pTextureFilename as well

}

}

adjacencyBfr->Release();

materialBfr->Release();

You’ll find the full code for loading and storing a mesh in the upcoming example
in this chapter. Now that you have your “something to render,” next you need to
sort out your “how to render.” Today this is done with vertex and pixel shaders.

LOADING AN EFFECT

I assume that you have some knowledge of how pixel and vertex shaders work. An
effect is a collection of instructions of how to render a specific effect and can include
both vertex and pixel shaders. On a high-level, an Effect file can contain one or

28 Character Animation with Direct3D

more Techniques, which each can contain one or more passes (some effects require
the geometry to be rendered more than once). The Effect files are composed with
the High Level Shading Language (HLSL), which is what I’ll use throughout the
book to create some of the more advanced effects. The following function loads and
compiles an Effect file from your hard drive at run time:

HRESULT D3DXCreateEffectFromFile(

LPDIRECT3DDEVICE9 pDevice, //Direct3D device

LPCTSTR pSrcFile, //File to compile

CONST D3DXMACRO * pDefines, //Optional macros

LPD3DXINCLUDE pInclude, //Optional includes

DWORD Flags, //Compile flags

LPD3DXEFFECTPOOL pPool, //Pool for shared parameters

LPD3DXEFFECT * ppEffect, //Resulting effect

LPD3DXBUFFER * ppCompilationErrors //Compilation error

);

And here’s the code that uses the D3DXCreateEffectFromFile() function:

//Load Effect

ID3DXBuffer *pErrorMsgs = NULL;

HRESULT hRes = D3DXCreateEffectFromFile(

g_pDevice,

"someEffect.fx",

NULL,

NULL,

D3DXSHADER_DEBUG,

NULL,

&pEffect,

&pErrorMsgs);

if(FAILED(hRes) && (pErrorMsgs != NULL))

{

//Failed to create Effect

MessageBox(NULL,

(char*)pErrorMsgs->GetBufferPointer(),

"Effect Error",

MB_OK);

}

Chapter 2 A Direct3D Primer 29

Now the effect has been loaded, compiled (hopefully without errors), and
stored in the ID3DXEffect interface. I won’t cover the syntax of HLSL in this book
(since that would require a book in itself). Suffice it to say that HLSL is close
enough to C syntax that you should have no problems understanding it even if you
are new to it. Look at the example code and refer to the DirectX SDK documenta-
tion for more information. You can also find lots of tutorials online on the subject
[Germishuys08].

RENDERING A MESH WITH AN EFFECT

Finally, here’s the point where you’ll see something appear on the screen. Once
you’ve created your transformation matrices (the world, the view, and the projection
matrix), you need to upload these (and any other info you need as well) to the
Effect. This is done like this:

//Calculate Transformation Matrices

D3DXMATRIX view, proj, world;

D3DXMatrixIdentity(&world);

D3DXMatrixLookAtLH(&view, ...);

D3DXMatrixPerspectiveFovLH(&proj, ...);

//Upload info to Effect

pEffect->SetMatrix("matW", &world);

pEffect->SetMatrix("matVP", &(view * proj));

pEffect->SetVector("lightPos", &lightPos);

This uploads the matrices to the Effect. You can similarly upload vectors, floats,
etc. with the SetVector() and SetFloat() functions, respectively. Once you’ve up-
loaded all the information the Effect needs to render, you do the actual rendering:

pEffect->SetTechnique(hTech);

UINT numPasses = 0;

pEffect->Begin(&numPasses, NULL);

for(int i=0; i<numPasses; i++)

{

pEffect->BeginPass(i);

//Render Geometry Here

pEffect->EndPass();

}

pEffect->End();

There you go. The mesh you’ve loaded will now be rendered onto the screen.

30 Character Animation with Direct3D

CONCLUSIONS

In this chapter I covered all the necessary groundwork needed to create and run a
Direct3D application. I’ll admit that this is probably one of the briefest introductions
of this topic ever written. However, if any of the topics covered in this chapter felt
foreign, I suggest you read up on those before continuing. Another thing not cov-
ered by this book is the High Level Shading Language (HLSL), which is something
you need to at least understand before continuing.

Chapter 2 A Direct3D Primer 31

EXAMPLE 2.1

On the CD-ROM you’ll find Example 2.1 in the examples folder. Make sure
you go over this example thoroughly; I will use the application framework
used in this example throughout the rest of the book.

It’s worth noting that there is more error checking being done in the
example code than in the book. This is mainly to keep the code in the
book from becoming too bloated and dry to read. You should have no
problems with it though since it is the same code after all.

Hopefully you’re still reading and are not too turned off by all the groundwork
code covered in this chapter. From now on until the end of the book there’ll be
nothing but character animation on the table.

FURTHER READING

[Germishuys08] Germishuys, Pieter, “Basic HLSL Tutorials.” Available online at
http://www.pieterg.com/Tutorials/, 2008.

[Llopis03] Llopis, Noel, C++ For Game Programmers. Charles River Media, 2003.

[Luna06] Luna, Frank, Introduction to 3D Game Programming with Direct X 9.0c: A
Shader Approach. Wordware Publishing, 2006.

32 Character Animation with Direct3D

http://www.pieterg.com/Tutorials/

33

Skinned Meshes3

With the hip bone connected to the back bone,
and the back bone connected to the neck bone,
and the neck bone connected to the head bone,
Oh mercy how they scare!

-Dem Dry Bones, traditional spiritual

In the previous chapter you loaded and rendered a static mesh (the Soldier model).
However, to create a character that you can animate, you first must give it some
bones. In this chapter you will learn the basics of bone structures and, more im-
portantly, how to skin a mesh to such a structure (called skinning). This type of
structure is created from several bones linked together in a hierarchical fashion. A
bone usually has a parent bone and zero or more child bones. Any transformations
applied to a parent bone also affect its children (and their children, and so on).
After you have built or loaded a hierarchical bone structure, you need to apply a
mesh to it so that each vertex in the mesh is linked to one or more bones.

If you are looking at this topic for the first time, it might all seem a little confusing
at the moment, but don’t worry. It will all become clearer. In this chapter, you’ll learn
about the following:

Basics of bone hierarchies
Loading bone hierarchies from an .x file
Software skinning
Hardware skinning
Rendering static meshes in a bone hierarchy

SKINNED MESHES OVERVIEW

The concept of a skinned mesh is perhaps easiest understood by first looking at
Figure 3.1. In it you see an arm in three different poses together with the under-
lying skeleton arm. As the muscles move a bone around a joint, the “flesh” will
follow. This very simple idea is the essence of what you will try to accomplish in
this chapter.

In computer graphics, the bones used to animate characters are just a helping
structure, something that will never be rendered to the screen. Many fewer bones
are needed for digital characters than for humans. Grown humans have over 200
bones, whereas the characters used in computer animation have 30 to 60 bones,
depending on the level of control you need. You can see an example of a simplified
bone hierarchy in the chapter cover image.

34 Character Animation with Direct3D

But before you see anything on the screen, there’s quite a lot of behind-the-scenes
work you need to tackle first. The first step is to create a bone hierarchy, either by
creating it manually or, more commonly, by loading it from a 3D modeling program.
After that, you need to skin the mesh to the bone hierarchy. Generally speaking,
this can be done in two different ways, using either software skinning or hardware
skinning. With software skinning, the new locations of the vertices are calculated by
the central processing unit (CPU) each frame before the character is rendered. With
hardware skinning, on the other hand, the vertices are calculated on-the-fly in the
graphical processing unit (GPU) during render time. I’ll cover both techniques in this
chapter and look at the pros and cons of each. However, first things first; before you
can render a skinned character, you need to create a bone hierarchy (regardless of
which rendering approach you are aiming to take).

BONE HIERARCHIES

When attempting to understand what a bone hierarchy is and how it works, it helps
to think of your own skeleton. Bone hierarchies work fundamentally in exactly the
same way. Think of one of your many limbs. For instance, look back at the arm in
Figure 3.1. Consider the three major joints in that arm: the shoulder, elbow, and
wrist joints. These three joints are connected with two bones: the upper and the lower
arm. In a bone hierarchy, the upper arm is the parent of the lower arm. This means

Chapter 3 Skinned Meshes 35

FIGURE 3.1
A human arm and its corresponding bones.

that whenever the upper arm is rotated around the shoulder joint, this transfor-
mation also affects the location of the lower arm and the hand (even though these
haven’t been rotated in relationship to their parents). This is something quite easy
for you to test for yourself just by moving your own arm around.

If you remember some old games in the era of the first Tomb Raider game,
these had one mesh object for each bone with the seams clearly showing, as shown
in Figure 3.2.

36 Character Animation with Direct3D

FIGURE 3.2
An early game character (Laura Croft) using a separate mesh for each
bone. Notice the seams in the joints.

Back in the days when Laura Croft was taking her first steps, skinned meshes
where a bit too heavy (calculation-wise) for the hardware of that time. But the idea
of bone hierarchies hasn’t changed much since those early days. In this chapter,
however, the goal is to create a character whose mesh blends seamlessly even in the
joint areas. So it’s time to get cracking on building a bone hierarchy. But first the
bone structure that will make up each of the individual bones in the hierarchy
needs to be covered.

THE D3DXFRAME STRUCTURE

In Direct3D, bones (and other similar linked hierarchies) are described using the
D3DXFRAME structure, and it is with this structure that the complete bone hierarchy
will be built.

struct D3DXFRAME {

LPSTR Name; //Name of bone

D3DXMATRIX TransformationMatrix; //Local bone pos, rot & sca

LPD3DXMESHCONTAINER pMeshContainer; //Mesh connected to bone

D3DXFRAME* pFrameSibling; //Sibling bone pointer

D3DXFRAME* pFrameFirstChild; //First child bone

};

The D3DXFRAME structure contains a name, which, as you will see later, can help
us find a specific bone in the hierarchy, such as a head bone, hand bone, etc. This
can be useful if you want to attach different helmets, weapons, etc. to the head or
hand of a character.

Each bone also has a transformation matrix describing its position, orientation,
and scale in relation to its parent bone. This matrix describes transformations in
local space only. This basically means that all position, rotation, and scale transfor-
mations are around the origin (coordinate 0,0,0) and not around the position
where the bone will end up. If you rendered a skinned character using only the
transformation matrices stored in the TransformationMatrix, you would end up
with a big mess located at the origin of your world. Later on I’ll extend the
D3DXFRAME structure to also contain the finished world transformation matrix, and
I’ll cover how to calculate this.

Look again at the D3DXFRAME structure and you’ll see that it also contains a
LPD3DXMESHCONTAINER pointer, which in turn can contain a mesh. As with characters
like the early Laura Croft, each bone would have an own mesh attached to it. The
D3DXFRAME structure works like a linked list in which the sibling bones are all sharing
the same parent. To better understand how a bone hierarchy can be built using the
D3DXFRAME structure, look at Figure 3.3.

Chapter 3 Skinned Meshes 37

Vertical connections in Figure 3.3 describe the “first child” pointer, and the
horizontal connections describe the “first sibling” pointer. As you can see, by
using only these two pointers in each bone, you can describe very complex bone
hierarchies. The top bone in Figure 3.3 (the pelvis) is the root node of the hierar-
chy. Whenever traversing a hierarchy like this, always start with the root node. The
following code shows you how to traverse the whole hierarchy, passing through
each and every bone/node.

void PrintHierarchy(D3DXFRAME *bone)

{

//Print Bone Name

cout << bone->Name;

//Traverse Siblings

if(bone->pFrameSibling != NULL)

PrintHierarchy(bone->pFrameSibling);

//Traverse Children

if(bone->pFrameFirstChild != NULL)

PrintHierarchy(bone->pFrameSibling);

}

Hierarchies like these are traversed easiest using recursive functions like the one in
the example code. Make sure you understand how this function traverses the entire
bone hierarchy before continuing. As an exercise, you can try to follow the function’s
path through the hierarchy in Figure 3.3 and write down in which order the bone
names are printed.

38 Character Animation with Direct3D

FIGURE 3.3
An example of a bone hierarchy built using the D3DXFRAME structure.

The PrintHierarchy() function takes a pointer to a D3DXFRAME object as input,
prints its name, and then calls the same function for any siblings and children that
the D3DXFRAME object may have. Hopefully you have an idea by now of how complex
skeletal structures can be built and traversed using only the child and sibling
pointer per bone.

As another exercise, draw a 3D picture of a horse or a dog on a piece of paper. Next
draw the major bones you would need to animate this animal. Now, decide which
bone would be the root bone and draw the entire bone hierarchy on the paper in
the same way as in Figure 3.3.

As stated earlier, the D3DXFRAME structure has only one transformation matrix
containing the information of position, orientation, and scale of a certain bone. The
transformation matrix of a bone is in relation to its parent. In most cases, the actual
transformation matrix of a bone is what you need (i.e., the world matrix of the
bone). The world matrix is the transformation matrix needed to render the bone at
the correct location in the world. Therefore the D3DXFRAME structure will be extended
to create the Bone structure as follows:

struct Bone: public D3DXFRAME

{

D3DXMATRIX CombinedTransformationMatrix;

};

As you can see, the Bone structure inherits all the base components of the
D3DXFRAME and adds only the CombinedTransformationMatrix variable. This matrix will
contain the actual world transformation of a specific bone. For a moment, assume
that all the TransformationMatrix variables in a bone hierarchy built with Bone objects
contain valid transformation matrices. The following code then traverses the bone
hierarchy and calculates the combined transformation matrices (i.e., world matrices)
for all these bones.

void CalculateWorldMatrices(Bone* bone, D3DXMATRIX *parentMatrix)

{

if(bone == NULL)

return;

//Calculate the combined transformation matrix

D3DXMatrixMultiply(&bone->CombinedTransformationMatrix,

&bone->TransformationMatrix,

parentMatrix);

Chapter 3 Skinned Meshes 39

//Perform the same calculation on all siblings...

if(bone->pFrameSibling)

{

CalculateWorldMatrices((Bone*)bone->pFrameSibling,

parentMatrix);

}

//... and all children

if(bone->pFrameFirstChild)

{

//Note that we send a different parent matrix to

//siblings and children!

CalculateWorldMatrices((Bone*)bone->pFrameFirstChild,

&bone->CombinedTransformationMatrix);

}

}

This function will be called on the root bone only with the world matrix of the
entire character. The function will recursively traverse the entire bone hierarchy,
filling the combined transformation matrix with the actual world matrix of the
bone. Make sure you fully understand the last code snippet before continuing.
Notice how for the siblings, the CalculateWorldMatrices() function call sends the
same parent matrix, whereas for the child bones, the newly calculated combined
matrix is passed as a parameter instead.

If this is your first time encountering linked lists and recursive function calls of
this nature, it may seem a little confusing at the moment. I wish I could tell you it’s
about to get simpler. Unfortunately, nothing’s really that simple when it comes to
character animation.

I guess we can all agree that building complex hierarchies like these by hand in
code would test the patience of even, well, the most patient man. A simpler and
faster approach is to import a finished bone hierarchy from a 3D modeling program.

LOADING A BONE HIERARCHY

There are many different file formats that store mesh, bone, and animation infor-
mation. In this book, I will stick to the .x file format—the native DirectX mesh
format. There are several exporters for the most common 3D creation tools, as well
as converters between the most common file formats that target the .x file format.

Anyway, assume that you have a skinned character complete with a bone hier-
archy, skinning information, and animation. (If you don’t, there are a few on the
accompanying CD-ROM for you to practice with). To load a bone hierarchy, you

40 Character Animation with Direct3D

will have to use the ID3DXAllocateHierarchy interface. This is a very powerful
interface, and, as you will see later on in the book, this interface can be used for
more than just loading skinned meshes. The power of this interface lies in the fact
that you have to implement its function yourself. Although this is a lot of work,
in the end you’ll see how this interface can be used to do a lot of different things
while loading .x files. The ID3DXAllocateHierarchy interface has four functions you
need to implement: CreateFrame(), CreateMeshContainer(), DestroyFrame(), and
DestroyMeshContainer(), as detailed in the following sections.

THE CREATEFRAME() FUNCTION

HRESULT CreateFrame(

LPCSTR Name, //New bone name

LPD3DXFRAME * ppNewFrame //Location of the new bone

);

The CreateFrame() function takes a pointer to a string and a pointer to a D3DXFRAME
object as input. If successful, the new D3DXFRAME object is created where the variable
ppNewFrame is pointing.

THE CREATEMESHCONTAINER() FUNCTION

HRESULT CreateMeshContainer(

LPCSTR Name, //Mesh name

CONST D3DXMESHDATA * pMeshData, //Mesh

CONST D3DXMATERIAL * pMaterials, //Material list

CONST D3DXEFFECTINSTANCE * pEffectInstances, //Effects list

DWORD NumMaterials, //Number materials

CONST DWORD * pAdjacency, //Mesh adjacency array

LPD3DXSKININFO pSkinInfo, //Mesh skinning info

LPD3DXMESHCONTAINER * ppNewMeshContainer //Mesh container output

);

As you can see, the CreateMeshContainer() function is a lot more complex
than the CreateFrame() function. This method gets a name, mesh data, materials,
effects, skinning information, and more as input. If successful, this function re-
turns a newly created D3DXMESHCONTAINER object. Flip back a few pages and take a
look at the D3DXFRAME structure, and see how this structure contains the pointer to
a D3DXMESHCONTAINER object. As you may have realized, the ID3DXAllocateHierarchy
reads both mesh and bone data from a file and creates a complete hierarchy using
D3DXFRAME objects and D3DXMESHCONTAINER objects (or any user-defined structures
that overload these—for instance, the Bone structure).

Chapter 3 Skinned Meshes 41

42 Character Animation with Direct3D

THE DESTROYFRAME() FUNCTION

HRESULT DestroyFrame(

LPD3DXFRAME pFrameToFree

);

This function is quite simple. In it you are supposed to release any resources
tied up by a frame (Bone).

THE DESTROYMESHCONTAINER() FUNCTION

HRESULT DestroyMeshContainer(

LPD3DXMESHCONTAINER pMeshContainerToFree

);

As with the previous function, the DestroyMeshContainer() function is intended
to release any resources tied up by a D3DXMESHCONTAINER object.

THE ID3DXALLOCATEHIERARCHY

So why do you need to implement the functions defined by the ID3DXAllocateHier-
archy yourself? Loading the hierarchies seems pretty straightforward. Why couldn’t it
simply handle it all? Well, the power lies in the fact that you often want to override
both the D3DXFRAME and the D3DXMESHCONTAINER structures. As you’ve already seen,
the Bone structure has been created inheriting from the D3DXFRAME structure. By
implementing the four functions of the ID3DXAllocateHierarchy you can determine
exactly what type of objects are created (and how they are initialized). To imple-
ment the ID3DXAllocateHierarchy, you simply create a new class inheriting from it.
The class I’ll use throughout this book is called BoneHierarchyLoader and is defined
as follows:

class BoneHierarchyLoader : public ID3DXAllocateHierarchy

{

public:

STDMETHOD(CreateFrame)(

THIS_ LPCSTR Name,

LPD3DXFRAME *ppNewFrame);

STDMETHOD(CreateMeshContainer)(

THIS_ LPCTSTR Name,

CONST D3DXMESHDATA * pMeshData,

CONST D3DXMATERIAL * pMaterials,

CONST D3DXEFFECTINSTANCE * pEffectInstances,

DWORD NumMaterials,

CONST DWORD * pAdjacency,

LPD3DXSKININFO pSkinInfo,

LPD3DXMESHCONTAINER * ppNewMeshContainer);

STDMETHOD(DestroyFrame)(

THIS_ LPD3DXFRAME pFrameToFree);

STDMETHOD(DestroyMeshContainer)(

THIS_ LPD3DXMESHCONTAINER pMeshContainerBase);

};

The STDMETHOD macro used in the declaration of the member functions translate to:

virtual HRESULT __stdcall

Virtual simply means the function can be overridden by inheriting classes, HRESULT
is the return type, and the __stdcall defines the calling convention with which the
function is called. However, to make things easier and avoid this can of worms, you
can simply use the STDMETHOD macro.

Here’s a look at a custom implementation of the CreateFrame() and
DestroyFrame() functions. This implementation creates a Bone structure rather
than a D3DXFRAME structure (remember that the Bone structure had the extra added
CombinedTransformationMatrix member to store its world matrix).

HRESULT BoneHierarchyLoader::CreateFrame(LPCSTR Name,

LPD3DXFRAME *ppNewFrame)

{

Bone *newBone = new Bone;

memset(newBone, 0, sizeof(Bone));

//Copy name

if(Name != NULL)

{

newBone->Name = new char[strlen(Name)+1];

strcpy(newBone->Name, Name);

}

//Set the transformation matrices

D3DXMatrixIdentity(&newBone->TransformationMatrix);

D3DXMatrixIdentity(&newBone->CombinedTransformationMatrix);

Chapter 3 Skinned Meshes 43

//Return the new bone...

ppNewFrame = (D3DXFRAME)newBone;

return S_OK;

}

HRESULT BoneHierarchyLoader::DestroyFrame(LPD3DXFRAME pFrameToFree)

{

if(pFrameToFree)

{

//Free Name String

if(pFrameToFree->Name != NULL)

delete [] pFrameToFree->Name;

//Free Frame

delete pFrameToFree;

}

pFrameToFree = NULL;

return S_OK;

}

For now, I’ll just concentrate on creating the bones and not the mesh containers.
Check out the custom version of the CreateFrame() function. Notice how a Bone
object is created rather than a D3DXFRAME object? In this function, the members of the
D3DXFRAME structure are initialized together with the added CombinedTransformation-
Matrix member. This way you can create your own bone structure and still use the
ID3DXAllocateHierarchy interface when loading bone hierarchies from your .x files.

Looking at the DestroyFrame() function, you see that it releases only the Name of
the bone since this was the only memory allocated that won’t be automatically
released before deleting the frame itself. However, if you create a more advanced
bone structure inheriting from the D3DXFRAME structure, it is in the DestroyFrame()
function that you have to release any extra resources allocated in the CreateFrame()
function. Before covering a code example implementing a custom version of the
ID3DXAllocateHierarchy, here’s the D3DX function you will use to load an .x file:

44 Character Animation with Direct3D

HRESULT D3DXLoadMeshHierarchyFromX(

LPCSTR Filename,

DWORD MeshOptions,

LPDIRECT3DDEVICE9 pDevice,

LPD3DXALLOCATEHIERARCHY pAlloc,

LPD3DXLOADUSERDATA pUserDataLoader,

LPD3DXFRAME* ppFrameHierarchy,

LPD3DXANIMATIONCONTROLLER* ppAnimController

);

The most notable parameters to this function are the pAlloc, ppFrameHierarchy,
and the ppAnimController. The pAlloc is a pointer to a custom implemented ID3DX-
AllocateHierarchy object (in this case, the BoneHierarchyLoader structure). The
ppFrameHierarchy parameter contains the location where the root bone will be
stored. The ppAnimController object is basically the structure used to animate a
bone hierarchy. The ID3DXAnimationController interface will be covered in more
detail in Chapters 4 and 5, where you will learn how to animate a character. For the
other parameters see the DirectX documentation.

To contain and encapsulate all necessary data used for a skinned character, the
following SkinnedMesh class will be created:

class SkinnedMesh

{

public:

SkinnedMesh();

~SkinnedMesh();

void Load(char fileName[]);

private:

void UpdateMatrices(Bone* bone, D3DXMATRIX *parentMatrix);

D3DXFRAME *m_pRootBone;

};

As you can see, this class doesn’t contain much at the moment. Later, this class
will be extended and expanded as more functionality is added to your skinned
characters. The load function basically encapsulates the D3DX library function
D3DXLoadMeshHierarchyFromX(). The UpdateMatrices() function was covered a few
pages ago, when you learned how to calculate the combined transformation
matrices of each bone in the hierarchy. Also, note that the only member in the
SkinnedMesh class at the moment is a pointer to a D3DXFRAME object (which will later
hold the root bone of the entire bone hierarchy). The following code shows the
SkinnedMesh loading function:

Chapter 3 Skinned Meshes 45

void SkinnedMesh::Load(char fileName[])

{

BoneHierarchyLoader boneHierarchy;

//Load a bone hierarchy from a file

D3DXLoadMeshHierarchyFromX(fileName,

D3DXMESH_MANAGED,

pDevice,

&boneHierarchy,

NULL,

&m_pRootBone,

NULL);

//Update all Bone transformation matrices

D3DXMATRIX i;

D3DXMatrixIdentity(&i);

UpdateMatrices((Bone*)m_pRootBone, &i);

}

Sometimes it can be useful to locate a specific bone in a hierarchy—for
example, if you would like to find the neck bone of a character and apply a rotation
transformation matrix and make the head turn. The following D3DX function is
then very useful:

LPD3DXFRAME D3DXFrameFind(

CONST D3DXFRAME * pFrameRoot, //The root bone

LPCSTR Name //Name of bone you are looking for

);

This function returns a pointer to the correct bone in the hierarchy or returns
NULL if the bone wasn’t found. Try to use this function in Example 3.1 to find the
neck bone.

Hopefully you know by now how to load a bone hierarchy by implementing the
ID3DXAllocateHierarchy interface. Later on in the book, you’ll see how you can use
the same interface to load several different morph targets from a single .x file rather
than keeping these meshes in separate files. However, for now it is time to actually
apply a mesh to the bone hierarchy.

46 Character Animation with Direct3D

APPLYING A MESH TO THE BONE HIERARCHY

As you probably know, a mesh consists of several polygons that in turn consist of
one or more triangles. Each triangle in turn is defined by three vertices—i.e., three
points in 3D space. Before you look at how to skin a complex character mesh to a
bone hierarchy, first just look at a single vertex. A vertex can be linked (influenced)
by one or more bones in the bone hierarchy. The amount a bone influences a vertex
is determined by a weight value as shown in Figure 3.4.

Chapter 3 Skinned Meshes 47

EXAMPLE 3.1

Okay, I’ve think you’ve had enough theory for a while. Here’s an actual code
example for you to look at. You’ll find Example 3.1 on the CD-ROM. In this

example, a bone hierarchy is loaded from an .x file. An ID3DXAllocateHierarchy
interface is also implemented, and you’ll find the first rough version of the
SkinnedMesh class. Note that in this example there’s also a temporary function for
rendering a bone hierarchy using spheres and lines. Make sure you completely
understand this example, because things are about to get a lot harder.

It is important that the combined weights for a vertex equal 1.0 (100%).

In more mathematical terms, the transformation matrix applied to a vertex is
defined as follows:

MTot =(w0M0+w1M1…+WnMn)

This formula multiplies the bone weight (wx) with the bone transformation
matrix (Mx) for all influencing bones and sums up the result (MTot). The resulting
matrix is then used to transform the vertex. In DirectX, the information about
which bones influence which vertices, as well as their respective weights, etc., is
stored and controlled with the ID3DXSkinInfo interface. One way of creating this
interface is by using the following D3DX function:

HRESULT D3DXCreateSkinInfo(

DWORD NumVertices,

CONST D3DVERTEXELEMENT9 * pDeclaration,

DWORD NumBones,

LPD3DXSKININFO * ppSkinInfo

);

This function takes the amount of vertices in a mesh, their vertex declaration
(i.e., what information each vertex contains), and the number of bones that will be
used to skin this mesh. If you are making something in code that requires skinning,
this would be the best approach. However, characters will most definitely be created
and skinned in a 3D software such as 3D Studio Max, Maya, or similar. Luckily,
when you export a character like this to the .x file format, the skinning information

48 Character Animation with Direct3D

FIGURE 3.4
An example of how a vertex (the cross) is affected by two bones (B1 and B2) with the
weights 20% and 80%, respectively. Notice how the vertex follows B2 more than B1 due
to the weights.

is exported as well. If you look again at the CreateMeshContainer() function of the
ID3DXAllocateHierarchy interface, you’ll notice that one of the parameters to this
function is indeed a pointer to a ID3DXSkinInfo object. So all you need to do when
reading an .x file is to store this object and use it later when you skin a character.

Soon the CreateMeshContainer() function will be implemented, and through
it the process of loading a character with bones and all will be complete. First,
however, you need to understand the two major choices you have for how to
render a skinned character. The first option is to do the skinning using the CPU—
a.k.a. software skinning. The other option is to do the skinning directly with the
GPU (graphics processing unit, i.e., the graphics card) as the mesh is being
rendered—a.k.a. hardware skinning. (There are other variations of these two
techniques, but these two are the major options).

SOFTWARE SKINNING OVERVIEW

With the first option, software skinning, the positions of each vertex in a mesh are
calculated using the mathematical formula covered earlier. The result is stored in
a temporary mesh that is then consequently rendered. Simple, straightforward,
but also very slow compared to hardware skinning. So if it is so slow compared to
hardware skinning, why use it? Well, the fact that the character is stored as a mesh
in memory is the major upside of software skinning. With this temporary mesh,
things like shadow casting, picking, etc., become a bit easier. With software
skinning, it also doesn’t matter how many bones are influencing a vertex. If you
were making a first-person shooter (FPS) game, you might want to test to see
whether or not a bullet you fired hit one of the enemy soldiers. With software
skinning, this would be easy to test using a simple mesh–ray intersection test.

HARDWARE SKINNING OVERVIEW

With hardware skinning, you can, of course, also do shadow casting, picking, etc.,
but then it requires a little more effort to get it to work. Hardware skinning also
has some limits as to how many bones can influence a vertex as well as how many
bones you can have per character without having to split up the mesh into several
parts. However, what you lose in functionality, you make up readily in speed.
Remember to choose your skinning method based on the particular game you are
making. In the following two sections, both software and hardware skinning will
be looked at in more detail.

For a simple mesh–ray intersection test, check out the D3DXIntersect() function in
the D3DX library. See the DirectX documentation for more info.

Chapter 3 Skinned Meshes 49

SOFTWARE SKINNING IMPLEMENTATION

Let’s first look at software skinning, since this is the more straightforward and easier
method to implement. Here’s a brief overview of the steps needed to render a skinned
mesh with software skinning:

1. (Optional) Overload D3DXFRAME
2. (Optional) Overload D3DXMESHCONTAINER
3. Implement the ID3DXAllocateHierarchy interface
4. Load a bone hierarchy and associated meshes, skinning information, etc.,

with the D3DXLoadMeshHierarchyFromX() function
5. For each frame, update the skeleton pose (i.e., the SkinnedMesh::

UpdateMatrices() function)
6. Update the target mesh using ID3DXSkinInfo::UpdateSkinnedMesh()
7. Render the target mesh as a common static mesh

Loading the Skinned Mesh

The first step on the path of skinning a mesh is to create your own mesh container
structure. You do this by overloading the D3DXMESHCONTAINER structure defined as
follows:

struct D3DXMESHCONTAINER {

LPSTR Name;

D3DXMESHDATA MeshData;

LPD3DXMATERIAL pMaterials;

LPD3DXEFFECTINSTANCE pEffects;

DWORD NumMaterials;

DWORD * pAdjacency;

LPD3DXSKININFO pSkinInfo;

D3DXMESHCONTAINER * pNextMeshContainer;

}

The D3DXMESHCONTAINER contains the mesh itself (in the D3DXMESHDATA structure)
as well as all the necessary stuff needed to render the mesh (materials, textures, and
shaders). The texture filenames are stored as a member of the D3DXMATERIAL structure
and must be loaded separately. Another notable member of this structure is the
pSkinInfo variable, which will contain skinning information for any skinned meshes
loaded. There are, however, some things that we want to add to this structure to
make it easier to render the mesh using software skinning. Therefore I’ve created the
BoneMesh structure, defined as follows:

50 Character Animation with Direct3D

struct BoneMesh: public D3DXMESHCONTAINER

{

ID3DXMesh* OriginalMesh; //Reference mesh

vector<D3DMATERIAL9> materials; //List of materials

vector<IDirect3DTexture9*> textures; //List of textures

DWORD NumAttributeGroups; //Number attribute groups

D3DXATTRIBUTERANGE* attributeTable; //Attribute table

D3DXMATRIX** boneMatrixPtrs; //Pointers to bone matrices

D3DXMATRIX* boneOffsetMatrices; //Bone offset matrices

D3DXMATRIX* currentBoneMatrices; //Current bone matrices

};

As you can see, quite a lot of extra information has been added to the BoneMesh
structure compared to what was added in the Bone structure. The first three members
should be quite easy to understand; the others may seem a little bit more obscure.
Table 3.1 provides more details about the members.

Chapter 3 Skinned Meshes 51

TABLE 3.1 THE BONEMESH MEMBERS

Member Description

OriginalMesh A copy of the original mesh in the bind pose

materials A vector of D3DMATERIAL9 materials (used instead of the
pMaterials pointer stored in the D3DXMESHCONTAINER structure)

textures A vector of textures—each texture corresponding to a material in
the materials vector

NumAttributeGroups The number of attribute groups in the mesh (i.e., parts of the
mesh using different materials/textures, etc.)

boneMatrixPtrs An array of matrix pointers, pointing to the transformation matrix
of each bone in the hierarchy

boneOffsetMatrices A matrix for each bone that transforms the mesh into bone space;
this is retrieved from the ID3DXSkinInfo

currentBoneMatrices When the character is animated, this array will contain the
combined transformation matrices of all the bones

Now that you’ve seen the overloaded D3DXMESHCONTAINER structure, take a look
at how the CreateMeshContainer() of the ID3DXAllocateHierarchy is implemented
to load a mesh into a BoneMesh object.

HRESULT BoneHierarchyLoader::CreateMeshContainer(

LPCSTR Name,

CONST D3DXMESHDATA *pMeshData,

CONST D3DXMATERIAL *pMaterials,

CONST D3DXEFFECTINSTANCE *pEffectInstances,

DWORD NumMaterials,

CONST DWORD *pAdjacency,

LPD3DXSKININFO pSkinInfo,

LPD3DXMESHCONTAINER *ppNewMeshContainer)

{

//Create new Bone Mesh

BoneMesh *boneMesh = new BoneMesh;

memset(boneMesh, 0, sizeof(BoneMesh));

//Get mesh data

boneMesh->OriginalMesh = pMeshData->pMesh;

boneMesh->MeshData.pMesh = pMeshData->pMesh;

boneMesh->MeshData.Type = pMeshData->Type;

//Add Reference so the mesh is not deallocated

pMeshData->pMesh->AddRef();

//To be continued...

First, a new BoneMesh object is created and all its members are set to zero and
NULL using the memset() function. Next, a reference is added to the mesh data for
both the OriginalMesh and the MeshData member. You need to keep a copy of the
mesh in its original form when you do software skinning (more about this when the
rendering of the mesh is covered).

IDirect3DDevice9 *pDevice = NULL;

pMeshData->pMesh->GetDevice(&pDevice); //Get pDevice ptr

//Copy materials and load textures (just like with a static mesh)

for(int i=0;i<NumMaterials;i++)

{

D3DXMATERIAL mtrl;

memcpy(&mtrl, &pMaterials[i], sizeof(D3DXMATERIAL));

boneMesh->materials.push_back(mtrl.MatD3D);

IDirect3DTexture9* newTexture = NULL;

52 Character Animation with Direct3D

if(mtrl.pTextureFilename != NULL)

{

char textureFname[200];

strcpy(textureFname, "meshes/");

strcat(textureFname, mtrl.pTextureFilename);

//Load texture

D3DXCreateTextureFromFile(pDevice,

textureFname,

&newTexture);

}

boneMesh->textures.push_back(newTexture);

}

//To be continued again...

In this section of the CreateMeshContainer() function, you first get a pointer
to the current device. After that, you copy all the materials over to the BoneMesh
structure, and if necessary any textures needed are loaded with the associated
materials (this is why you needed to retrieve the device pointer). Next, the skinning
information sent as a parameter to the CreateMeshContainer() will have to be stored.

if(pSkinInfo != NULL)

{

//Get Skin Info

boneMesh->pSkinInfo = pSkinInfo;

//Add reference so SkinInfo isn't deallocated

pSkinInfo->AddRef();

//Clone mesh and store in boneMesh->MeshData.pMesh

pMeshData->pMesh->CloneMeshFVF(D3DXMESH_MANAGED,

pMeshData->pMesh->GetFVF(),

pDevice,

&boneMesh->MeshData.pMesh);

//Get Attribute Table

boneMesh->MeshData.pMesh->GetAttributeTable(

NULL, &boneMesh->NumAttributeGroups);

boneMesh->attributeTable =

new D3DXATTRIBUTERANGE[boneMesh->NumAttributeGroups];

Chapter 3 Skinned Meshes 53

boneMesh->MeshData.pMesh->GetAttributeTable(

boneMesh->attributeTable, NULL);

//Create bone offset and current matrices

int NumBones = pSkinInfo->GetNumBones();

boneMesh->boneOffsetMatrices = new D3DXMATRIX[NumBones];

boneMesh->currentBoneMatrices = new D3DXMATRIX[NumBones];

//Get bone offset matrices

for(int i=0;i < NumBones;i++)

boneMesh->boneOffsetMatrices[i] =

*(boneMesh->pSkinInfo->GetBoneOffsetMatrix(i));

}

//Set ppNewMeshContainer to the newly created boneMesh container

*ppNewMeshContainer = boneMesh;

return S_OK;

}

In this last part of the CreateMeshContainer() function, you check whether
there’s any skinning info available. If so, make a clone of the mesh stored in the
pMeshData member of your BoneMesh structure. This cloned mesh will later be the
actual skinned mesh rendered. Also remember that a pointer to the original mesh
(OriginalMesh member) is stored. This mesh will be used as a reference to create the
skinned mesh stored in pMeshData each frame. In this piece of code, the number of
attribute groups as well as the attribute table itself is stored. Then the matrix array
is created according to how many bones are defined in the skinning information
(note that you copy the bone offset matrix from the ID3DXSkinInfo object). Lastly,
you simply store the created BoneMesh object and return S_OK.

The attribute table is stored using an array of D3DXATTRIBUTERANGE objects:

struct D3DXATTRIBUTERANGE {

DWORD AttribId; //which material/texture to use

DWORD FaceStart; //Face start

DWORD FaceCount; //Num of faces in this attribute group

DWORD VertexStart; //Vertex start

DWORD VertexCount; //Num of vertices in this attribute group

}

54 Character Animation with Direct3D

Later, when you render the mesh you loop through the attribute table, get the
AttribId, and use this to set which material and which texture to use to render that
subset of the mesh. This basically means that you can have several combinations of
materials and textures when you render a character.

Rendering the Skinned Mesh with Software Skinning

Now you know how to load a bone hierarchy and any meshes that are attached to a
bone using the extended Bone and BoneMesh structures as well as the BoneHierarchy-
Loader. Now is finally where the fun begins! Now you are finally coming to the point
where you’ll see a skinned character on the screen.

To render a BoneMesh we need to calculate the current matrices for all the
influencing bones and store these in the BoneMesh boneMatrixPtrs array. So just
after loading a mesh with the D3DXLoadMeshHierarchyFromX() function we call the
following function to set up these matrix pointers:

void SkinnedMesh::SetupBoneMatrixPointers(Bone *bone)

{

//Find all bones containing a mesh

if(bone->pMeshContainer != NULL)

{

BoneMesh *boneMesh = (BoneMesh*)bone->pMeshContainer;

//For the bones with skinned meshes, set up the pointers

if(boneMesh->pSkinInfo != NULL)

{

//Get num bones influencing this mesh

int NumBones = boneMesh->pSkinInfo->GetNumBones();

//Create an array of pointers with numBones pointers

boneMesh->boneMatrixPtrs = new D3DXMATRIX*[NumBones];

//Fill array

for(int i=0;i < NumBones;i++)

{

//Find influencing bone by name

Bone *b = (Bone*)D3DXFrameFind(

m_pRootBone,

boneMesh->pSkinInfo->GetBoneName(i));

Chapter 3 Skinned Meshes 55

//...and store pointer to it in the array

if(b != NULL)

{

boneMesh->boneMatrixPtrs[i] =

&b->CombinedTransformationMatrix;

}

else

{

boneMesh->boneMatrixPtrs[i] = NULL;

}

}

}

}

//Traverse the rest of the hierarchy...

if(bone->pFrameSibling != NULL)

SetupBoneMatrixPointers((Bone*)bone->pFrameSibling);

if(bone->pFrameFirstChild != NULL)

SetupBoneMatrixPointers((Bone*)bone->pFrameFirstChild);

}

This function finds all the bones influencing a certain BoneMesh and stores a
pointer to their CombinedTransformationMatrix (i.e., world matrix). So after a skeleton
has been updated and put in a certain pose, these world matrices can be accessed
through this array during the rendering of the character. Then, to update a mesh in
software, you need to use the ID3DXSkinInfo::UpdateSkinnedMesh() function:

HRESULT UpdateSkinnedMesh(

CONST D3DXMATRIX * pBoneTransforms, //Bone transforms

CONST D3DXMATRIX * pBoneInvTransposeTransforms, //Not used

LPCVOID pVerticesSrc, //Source mesh (OriginalMesh)

PVOID pVerticesDst //Destination mesh (pMeshData)

);

The pBoneInvTransposeTransforms parameter may seem a little strange here.
However, this is used only if you have vertices that have two position elements. In
that case, this set of transform matrices is used on the second position element. In
this book, however, you won’t need to use this, so simply set this parameter to NULL.

56 Character Animation with Direct3D

I hope you remember the SkinnedMesh class that was used to encapsulate the
bone hierarchy and the loading functions. Now a Render() function will be added
to this class. In this function, the skinned mesh will be updated using the Update-
SkinnedMesh() function defined in the ID3DXSkinInfo interface. Then the mesh will
be rendered as follows:

void SkinnedMesh::Render(Bone *bone)

{

if(bone == NULL)

bone = (Bone*)m_pRootBone;

//If there is a mesh to render...

if(bone->pMeshContainer != NULL)

{

BoneMesh *boneMesh = (BoneMesh*)bone->pMeshContainer;

if (boneMesh->pSkinInfo != NULL)

{

// set up bone transforms

int numBones = boneMesh->pSkinInfo->GetNumBones();

for(int i=0;i < numBones;i++)

D3DXMatrixMultiply(&boneMesh->currentBoneMatrices[i],

&boneMesh->boneOffsetMatrices[i],

boneMesh->boneMatrixPtrs[i]);

//Update the skinned mesh

BYTE *src = NULL, *dest = NULL;

boneMesh->OriginalMesh->LockVertexBuffer(

D3DLOCK_READONLY, (VOID**)&src);

boneMesh->MeshData.pMesh->LockVertexBuffer(

0, (VOID**)&dest);

boneMesh->pSkinInfo->UpdateSkinnedMesh(

boneMesh->currentBoneMatrices,

NULL, src, dest);

boneMesh->MeshData.pMesh->UnlockVertexBuffer();

boneMesh->OriginalMesh->UnlockVertexBuffer();

Chapter 3 Skinned Meshes 57

//Render the mesh

for(int i=0;i < boneMesh->NumAttributeGroups;i++)

{

int mtrl = boneMesh->attributeTable[i].AttribId;

pDevice->SetMaterial(&(boneMesh->materials[mtrl]));

pDevice->SetTexture(0, boneMesh->textures[mtrl]);

boneMesh->MeshData.pMesh->DrawSubset(mtrl);

}

}

}

//Render Siblings & Children

if(bone->pFrameSibling != NULL)

Render((Bone*)bone->pFrameSibling);

if(bone->pFrameFirstChild != NULL)

Render((Bone*)bone->pFrameFirstChild);

}

The SkinnedMesh::Render() function takes a Bone pointer as a parameter. If this
Bone contains a BoneMesh, you render it, after which you call the Render() function
on any child or sibling the bone may have. This way you traverse the entire bone
hierarchy rendering any BoneMesh objects found along the way. First set up the
current matrices of the BoneMesh, and then lock the vertex buffers of both the source
mesh (OriginalMesh) and the destination mesh (pMeshData). After this, call the
UpdateSkinnedMesh() function, which calculates the new position for each vertex in
the mesh according to the current pose of the skeleton. After the mesh has been
updated, render each of its subsets using the attribute table stored during the
loading of the mesh.

58 Character Animation with Direct3D

HARDWARE SKINNING IMPLEMENTATION

Once you have mastered (or at least somewhat understood) the process of software
skinning, it’s time to take a look at its less gentle cousin: hardware skinning. With
hardware skinning, the mesh gets skinned on-the-fly in the GPU rather than
pre-processed each frame as is the case with software skinning. Although a little bit
trickier to implement than software skinning, hardware skinning is also considerably
faster. Several things are done differently, but the main thing is, of course, the fact that
you use a vertex shader to do your skinning calculations. Before you take a look at
what information you need to supply the shader with, here are the steps required for
hardware skinning.

Chapter 3 Skinned Meshes 59

EXAMPLE 3.2

Take a look at Example 3.2 on the accompanying CD-ROM and study the
code in it before continuing. In this example, a character will be loaded and
rendered as explained in the previous sections.

1. (Optional) Overload D3DXFRAME
2. (Optional) Overload D3DXMESHCONTAINER
3. Implement the ID3DXAllocateHierarchy interface
4. Load a bone hierarchy and associated meshes, skinning information, etc.,

with the D3DXLoadMeshHierarchyFromX() function
5. Convert the mesh to an Index Blended Mesh
6. For each frame, update the skeleton pose (i.e., the SkinnedMesh::

UpdateMatrices() function)
7. Upload the Matrix Palette (bone matrices) to the vertex shader
8. Render the Index Blended Mesh using the vertex shader

As you can see, most of the steps here are just the same as with software skinning.
There are two new concepts here though: the Matrix Palette and an Index Blended
Mesh. Before looking into the code for creating these, next is a quick look at the
theory behind them.

The Matrix Palette

In software skinning, the array of current bone transformation matrices was used
as a parameter to the ID3DXSkinInfo::UpdateSkinnedMesh() function. This function
used the information stored in the ID3DXSkinInfo object to match all vertices with
the bones influencing them as well as their corresponding weights. Now you have
to take care of this calculation yourself in the vertex shader. The Matrix Palette is
simply another name for the array of current bone transformations.

Unlike in software skinning, where there’s no limit to the size of your Matrix Palette,
in hardware skinning you are limited to a fixed number of bones, depending on the
amount of vertex shader constants your graphics card supports. You can find this
out by checking device caps as follows:

D3DCAPS9 caps;

d3d9->GetDeviceCaps(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &caps);

int approxNumBones = caps.MaxVertexShaderConst / 4;

Remember that you will use a lot of constants for world, view, projection matrices
and textures, etc. This means that the more additional constants you use for your
rendering, the less you have available for the Matrix Palette. If you have a character
with more than approxNumBones, then the mesh will be split into multiple parts and
rendered in several passes.

60 Character Animation with Direct3D

Vertex Shader 2.0 supports 256 vertex constants, which in most cases is
enough. However, as mentioned earlier, if you have a skinned mesh with a huge
amount of bones, then it needs to be split up into parts before rendering. Luckily,
this can be done in the same step as when a mesh is converted into an Index
Blended Mesh.

Index Blended Meshes

Now that you know in principle how you build the Matrix Palette and what limitations
the vertex shader constants bring, here’s how you convert a mesh into an Index
Blended Mesh.

Figure 3.5 shows how the ID3DXSkinInfo::ConvertToIndexedBlendedMesh()
function converts a vertex into an Index Blended Vertex. It adds the bone weights
and the bone indices as vertex elements. It also sets these indices to point to the
correct bone transformation matrices in the Matrix Palette, as shown in Figure 3.6.

In this case the vertex is blended using four bones—namely, bones 3, 4, 6, and 11.
The weight for each bone is stored in the vertex itself as an array of float values. To
make this conversion, all you need to do is call the ConvertToIndexedBlendedMesh()
function in your CreateMeshContainer() function.

HRESULT ConvertToIndexedBlendedMesh(

LPD3DXMESH pMesh, //Input mesh

DWORD Options, //Mesh Options

DWORD paletteSize, //Max number of bones

CONST DWORD * pAdjacencyIn, //Input Adjacency Info

LPDWORD pAdjacencyOut, //Output Adjacency Info

DWORD * pFaceRemap, //Face remapping info

LPD3DXBUFFER * ppVertexRemap, //Vertex remapping info

DWORD * pMaxVertexInfl, //Max num bones per vertex

DWORD * pNumBoneCombinations, //Num bones in combo table

LPD3DXBUFFER * ppBoneCombinationTable, //Bone combo table

LPD3DXMESH * ppMesh //Output Index Blended mesh

);

Chapter 3 Skinned Meshes 61

Some of these parameters you do not need to worry about. However, you do
need to specify the max number of bones that can be used (i.e., the max size of the
Matrix Palette). If the number of bones exceeds this value, the ConvertToIndexed-
BlendedMesh() function will split the mesh into multiple parts. For more info on this,
check out the DirectX documentation. Following is an excerpt from the CreateMesh-
Container() where the necessary changes have been made to accommodate hardware
skinning:

62 Character Animation with Direct3D

FIGURE 3.6
This figure shows the relationship between a single vertex and the
Matrix Palette.

FIGURE 3.5
This figure shows how a vertex is converted to contain the necessary information for
hardware skinning.

...

DWORD maxVertInfluences = 0;

DWORD numBoneComboEntries = 0;

ID3DXBuffer* boneComboTable = 0;

pSkinInfo->ConvertToIndexedBlendedMesh(

pMeshData->pMesh,

D3DXMESH_MANAGED | D3DXMESH_WRITEONLY,

35,

NULL,

NULL,

NULL,

NULL,

&maxVertInfluences,

&numBoneComboEntries,

&boneComboTable,

&boneMesh->MeshData.pMesh);

//Bone Combination table not used

if(boneComboTable != NULL)

boneComboTable->Release();

...

Well, that was fairly simple, wasn’t it? The mesh has now been completely
converted to an Index Blended Mesh with one simple function call. However, it
is important that you understand what this function does, because now you’ll
come face to face with the actual vertex shader that performs the skinning.

The Skinning Vertex Shader

You’ll now be introduced to the first proper shader in this book. I’m assuming that
you know enough of the High Level Shading Language (HLSL) to read through this
shader and understand it. If not, there are several good resources where you can
start learning it—among them [Germishuys]. This excerpt covers just the vertex
shader. See the example presented later on for the full effect code (.fx), including
pixel shader code and how it is incorporated in the application code.

//The Matrix Palette

extern float4x4 MatrixPalette[35];

//This variable should be set by the application code depending

Chapter 3 Skinned Meshes 63

//on the max number of bones used by a certain mesh

extern int numBoneInfluences = 2;

//Vertex Input

struct VS_INPUT_SKIN

{

float4 position : POSITION0;

float3 normal : NORMAL;

float2 tex0 : TEXCOORD0;

float4 weights : BLENDWEIGHT0;

int4 boneIndices : BLENDINDICES0;

};

//Vertex Shader Output / Pixel Shader Input

struct VS_OUTPUT

{

float4 position : POSITION0;

float2 tex0 : TEXCOORD0;

float shade : TEXCOORD1;

};

VS_OUTPUT vs_Skinning(VS_INPUT_SKIN IN)

{

VS_OUTPUT OUT = (VS_OUTPUT)0;

float4 p = float4(0.0f, 0.0f, 0.0f, 1.0f);

float3 norm = float3(0.0f, 0.0f, 0.0f);

float lastWeight = 0.0f;

int n = numBoneInfluences-1;

IN.normal = normalize(IN.normal);

//Blend vertex position & normal

for(int i = 0; i < n; ++i)

{

lastWeight += IN.weights[i];

p += IN.weights[i] *

mul(IN.position, MatrixPalette[IN.boneIndices[i]]);

norm += IN.weights[i] *

mul(IN.normal, MatrixPalette[IN.boneIndices[i]]);

}

lastWeight = 1.0f - lastWeight;

64 Character Animation with Direct3D

p += lastWeight *

mul(IN.position, MatrixPalette[IN.boneIndices[n]]);

norm += lastWeight *

mul(IN.normal, MatrixPalette[IN.boneIndices[n]]);

p.w = 1.0f;

//Transform vertex to world space

float4 posWorld = mul(p, matW);

//... then to screen space

OUT.position = mul(posWorld, matVP);

//Copy UV coordinate

OUT.tex0 = IN.tex0;

//Calculate lighting

norm = normalize(norm);

norm = mul(norm, matW);

OUT.shade = max(dot(norm, normalize(lightPos - posWorld)), 0.2f);

return OUT;

}

This High Level Shading Language (HLSL) shader only supports a maximum of
four bones influencing a single vertex. Notice the vertex input structure; see the
weights and the bone indices and how they are used in the shader to index and weigh
the bone matrices found in the Matrix Palette. Also note that you calculate the last
weight manually. This is to make sure that the sum of the weights always adds up to
1.0f. Once the shader is in place, the only thing left is to edit the SkinnedMesh::Render()
function so that it uses the vertex shader for skinning instead:

void SkinnedMesh::Render(Bone *bone)

{

if(bone == NULL)bone = (Bone*)m_pRootBone;

//If there is a mesh to render...

if(bone->pMeshContainer != NULL)

{

BoneMesh *boneMesh = (BoneMesh*)bone->pMeshContainer;

if (boneMesh->pSkinInfo != NULL)

{

Chapter 3 Skinned Meshes 65

// set up bone transforms

int numBones = boneMesh->pSkinInfo->GetNumBones();

for(int i=0;i < numBones;i++)

{

D3DXMatrixMultiply(&boneMesh->currentBoneMatrices[i],

&boneMesh->boneOffsetMatrices[i],

boneMesh->boneMatrixPtrs[i]);

}

//Set HW Matrix Palette

D3DXMATRIX view, proj;

pEffect->SetMatrixArray(

"MatrixPalette",

boneMesh->currentBoneMatrices,

boneMesh->pSkinInfo->GetNumBones());

//Render the mesh

for(int i=0;i < boneMesh->NumAttributeGroups;i++)

{

int mtrl = boneMesh->attributeTable[i].AttribId;

pEffect->SetTexture("texDiffuse",

boneMesh->textures[mtrl]);

D3DXHANDLE hTech = pEffect->GetTechniqueByName("Skinning");

pEffect->SetTechnique(hTech);

pEffect->Begin(NULL, NULL);

pEffect->BeginPass(0);

boneMesh->MeshData.pMesh->DrawSubset(mtrl);

pEffect->EndPass();

pEffect->End();

}

}

}

if(bone->pFrameSibling != NULL)

Render((Bone*)bone->pFrameSibling);

if(bone->pFrameFirstChild != NULL)

Render((Bone*)bone->pFrameFirstChild);

}

66 Character Animation with Direct3D

Not much has changed in this function compared to the software skinning
example. Most notable, of course, is the use of the shader and uploading the Matrix
Palette to it. Otherwise, you loop through the different attribute groups of the mesh
and render it using the shader.

RENDERING STATIC MESHES IN BONE HIERARCHIES

Sometimes you might not want the character skinned. Making animated machinery
is a prime example. Machinery rarely has “soft” parts; thus you don’t really need to
skin a mesh to make mechanical creations in your games. Nonetheless, you might
want to have a bone hierarchy controlling the different parts of the “machine.” Take
the example of a robot arm, as shown in Figure 3.7.

Chapter 3 Skinned Meshes 67

EXAMPLE 3.3

Check out Example 3.3 on the accompanying CD-ROM. Onscreen, you
won’t see much difference compared to the previous example, but behind

the scenes many things are indeed completely different. As always, study the code
and don’t move forward until you understand it completely.

Another case where you need rigid/solid objects is when they are combined
with skinned meshes. In the previous examples of the skinned soldier, you may
have noticed that he was missing both helmet and rifle. That’s because these two
objects have been rigid objects containing no skinning information. One way to
include these objects would be to assign all vertices in them to one bone (the head
bone, for example, in the case of the helmet). However, that would be a serious
waste of CPU/GPU power.

In this section, you’ll learn how to load and render both skinned meshes and
static meshes from the same .x. file—although, to be frank, you have already covered
the loading. Loading the meshes in the CreateMeshContainer() function is actually
already done. So here’s another high-level look at this function:

HRESULT BoneHierarchyLoader::CreateMeshContainer(...)

{

//Create new Bone Mesh

...

//Get mesh data here

...

//Copy materials and load textures (like with a static mesh)

...

68 Character Animation with Direct3D

FIGURE 3.7
As you can see, each part of the robot arm is rigid and therefore does not
require skinning.

if(pSkinInfo != NULL)

{

//Store Skin Info and convert mesh to Index Blended Mesh

...

}

//Set ppNewMeshContainer to newly created boneMesh container

...

}

As you can see, you only convert the mesh to an Index Blended Mesh if the
pSkinInfo parameter to this function is not NULL. But in the case of the helmet and the
rifle for the soldier, the pSkinInfo parameter will of course be NULL, and as a result the
mesh doesn’t get converted. However, mesh data and the belonging materials and
textures have still been copied. So all you really need to do is render them! And to do
that you need only to add the case of rendering static meshes to the
SkinnedMesh::Render() function.

void SkinnedMesh::Render(Bone *bone)

{

if(bone == NULL)bone = (Bone*)m_pRootBone;

//If there is a mesh to render...

if(bone->pMeshContainer != NULL)

{

BoneMesh *boneMesh = (BoneMesh*)bone->pMeshContainer;

if(boneMesh->pSkinInfo != NULL)

{

//Here’s where the skinned mesh is rendered

//only if the pSkinInfo variable isn’t NULL

...

}

else

{

//Normal Static Mesh

pEffect->SetMatrix("matW",

&bone->CombinedTransformationMatrix);

D3DXHANDLE hTech;

hTech = pEffect->GetTechniqueByName("Lighting");

pEffect->SetTechnique(hTech);

Chapter 3 Skinned Meshes 69

//Render the static mesh

for(int i=0;i < boneMesh->materials.size();i++)

{

pEffect->SetTexture("texDiffuse",

boneMesh->textures[i]);

pEffect->Begin(NULL, NULL);

pEffect->BeginPass(0);

boneMesh->OriginalMesh->DrawSubset(i);

pEffect->EndPass();

pEffect->End();

}

}

}

if(bone->pFrameSibling != NULL)

Render((Bone*)bone->pFrameSibling);

if(bone->pFrameFirstChild != NULL)

Render((Bone*)bone->pFrameFirstChild);

}

The static mesh is still locked to the bone hierarchy. As you can see, you use
the combined transformation matrix of the bone to which the mesh is linked when
you set the world matrix of the static mesh. So when you animate the neck bone
of the character, the helmet will follow automatically. You can now use this code
to render a robot character that has no skinned parts at all or a hybrid character
like the soldier that has both skinned and static meshes.

70 Character Animation with Direct3D

CONCLUSIONS

Congratulations! If you’re still reading, you’ve covered the meatiest chapter of the
entire book. Hopefully you’ve managed to learn something along the way. It is a
long process to attach a few vertices to a skeleton, isn’t it?

At the end of this chapter you don’t have much more to show for your work than
you had in Chapter 2. Well, to be honest, it is in the next chapter that you will really
experience the payoff—when you animate the skeleton (and with it the character).

Take time to look at each of the examples again; most likely, you’ll learn a lot
from playing with the code.

Chapter 3 Skinned Meshes 71

EXAMPLE 3.4

Example 3.4 contains the code just covered. The soldier finally looks like he
did when the soldier.x file was rendered as a static mesh in Chapter 2.

However, the major difference now is that the character has the underlying bone
hierarchy and the mesh is connected to it. In this example, pay extra attention to the
SkinnedMesh class and especially its rendering function.

CHAPTER 3 EXERCISES

Implement your own Skinned Mesh class, and support both hardware and
software skinning with it.
Check out the implementation of the character shadow in the software skinning
examples. Implement it also for the hardware-skinned character.
If you have access to 3D modeling software, create a skinned character, export
it to the .x file format, and read it into your application.
Access the Matrix Palette and multiply a small transformation (rotation/scale)
to the neck bone’s transformation matrix. Try to make the character turn his
head.
Study the RenderSkeleton() function in the SkinnedMesh class. Try also to visu-
alize which bone has a BoneMesh attached to it.
Implement your own version of the Bone, BoneMesh, and BoneHierarchyLoader
classes. Add new members to these classes that you initialize in your own
CreateMeshContainer() function.

FURTHER READING

[Ditchburn06] Ditchburn, Keith, “X File Hierarchy Loading.” Available online at
http://www.toymaker.info/Games/html/load_x_hierarchy.html, 2006.

[Germishuys] Germishuys, Pieter, “HLSL Tutorials.” Available online at
http://www.pieterg.com/Tutorials.php.

[Jurecka04] Jurecka, Jason, “Working with the DirectX .X File Format and Animation
in DirectX 9.0.” Available online at http://www.gamedev.net/reference/articles/
article2079.asp, 2004.

[Luna04] Luna, Frank, “Skinned Mesh Character Animation with Direct3D 9.0c.”
Available online at http://www.moon-labs.com/resources/d3dx_skinnedmesh.pdf,
2004.

[Taylor03], Taylor, Phil, “Modular D3D SkinnedMesh.” Available online at
http://www.flipcode.com/articles/article_dx9skinmeshmod.shtml, 2003.

72 Character Animation with Direct3D

http://www.toymaker.info/Games/html/load_x_hierarchy.html
http://www.pieterg.com/Tutorials.php
http://www.gamedev.net/reference/articles/article2079.asp
http://www.gamedev.net/reference/articles/article2079.asp
http://www.moon-labs.com/resources/d3dx_skinnedmesh.pdf
http://www.flipcode.com/articles/article_dx9skinmeshmod.shtml

73

Skeletal Animation4

The previous chapter covered the basics of skinned meshes, as well as how to load
them from an .x file. Apart from the added bone hierarchy, these meshes were still
not animated and therefore not much more interesting to look at than a regular sta-
tic mesh. That will change in this chapter, and you’ll learn how to load animation
data and apply it to a skinned mesh. This chapter covers the following:

Keyframe animation basics
Loading animation data
The ID3DXAnimationController
Having multiple controllers affecting the same mesh

KEYFRAME ANIMATION

As you might know, a movie is made up of several still images running quickly and
therefore creating the illusion of a moving picture. These still images are known as
frames. Each frame has a certain place in time as well as a picture of how the
“world” looks at this specific time step.

Keyframe animation has been around for quite some time. In fact, it was used in
the very first TV cartoons, for example. The way it worked was that the senior
animator would draw two images containing the poses of a cartoon character at two
different time steps (these frames are the so-called keyframes). The senior animator
would then give these keyframes to a junior animator and have him fill out the rest of
the frames in between, a process also known as tweening (from “in-between-ing”).

In many cases the keyframes are drawn by one artist in company A, and then the
rest of the frames are drawn by another artist in company B (which might even be
located in a completely different country). Each Simpson’s episode, for example, is
drawn mostly in India. What makes keyframing so powerful is that it can be applied
to almost anything (see Figure 4.1).

74 Character Animation with Direct3D

FIGURE 4.1
Several examples using the keyframing technique.

In Figure 4.1 the two keyframes are highlighted with gray background. Now
take a minute and try to imagine what the little square would look like if all the
transformations were applied at the same time across these two keyframes. In
computer animation this technique is very powerful. Even if the time step varies
in length and regularity (as the frame rate often does in games), this technique can
still be used to calculate the current frame based on two keyframes.

DirectX uses these two structures to describe keyframes. The D3DXKEY_VECTOR3
structure can describe translation and scale keyframes. Rotation, on the other hand,
is described by the D3DXKEY_QUATERNION structure, since using Euler angles can result
in a Gimbal lock. A Gimbal lock occurs when an object is rotated along one axis in
such a way that it aligns two of the x, y, and z axes. As soon as this happens, one
degree of freedom is lost and the condition can’t be reversed no matter what rotation
operation is performed on the object. Quaternions are a much safer option than
Euler angles (although somewhat harder to comprehend). Anyhow, here are the two
DirectX keyframe structures:

struct D3DXKEY_VECTOR3

{

FLOAT Time;

D3DXVECTOR3 Value;

};

struct D3DXKEY_QUATERNION

{

FLOAT Time;

D3DXQUATERNION Value;

};

As you can see, they both contain a timestamp as well as a value describing the
translation, scale, or rotation of the object at that time. If you’re not familiar with
quaternions at the moment, don’t worry; these will be looked into in more depth
when you reach Chapter 6. The time of these key structures is in animation ticks,
not in seconds. The amount of ticks an animation uses is equivalent to the time
resolution used by the animation. Next, check out how to combine lots of these
keyframes into an animation!

Chapter 4 Skeletal Animation 75

ANIMATION SETS

Animation sets are simply collections of animations, where an animation is a
collection of keyframes. Now that you know the theory behind keyframe animation,
it is time to turn to the practical side of things. In this section you’ll get familiar with
the ID3DXKeyframedAnimationSet interface. This interface contains a lot of different
functions, some of which will be used in this chapter. Others will be used later on
when things like animation callbacks are covered. Check the DirectX documentation
for the complete list of functions. To create an ID3DXKeyframedAnimationSet object,
the following function is used:

HRESULT D3DXCreateKeyframedAnimationSet(

LPCSTR pName, //Animation set name

DOUBLE TicksPerSecond, //Ticks per second

D3DXPLAYBACK_TYPE Playback, //Playback type

UINT NumAnimations, //Num animations in set

UINT NumCallbackKeys, //(more on this later)

CONST LPD3DXKEY_CALLBACK * pCallKeys, //(more on this later)

LPD3DXKEYFRAMEDANIMATIONSET * ppAnimationSet //Output

);

The most interesting parameter here is the playback type, which can be one of
the following: D3DXPLAY_LOOP, D3DXPLAY_ONCE or D3DXPLAY_PINGPONG (The ping-pong
option will play the animation forward, then backward, and then start over). Once
you have the empty animation set created, all you need to do is to fill it with some
new keyframes, which you can do with the following function:

HRESULT RegisterAnimationSRTKeys(

LPCSTR pName, //Animation name

UINT NumScaleKeys, //Num scale keys

UINT NumRotationKeys, //Num rotation keys

UINT NumTranslationKeys, //Num translation keys

CONST LPD3DXKEY_VECTOR3 * pScaleKeys, //Scale keyframes

CONST LPD3DXKEY_QUATERNION * pRotationKeys, //Rotation keyframes

CONST LPD3DXKEY_VECTOR3 * pTranslationKeys, //Translation keyframes

DWORD * pAnimationIndex //Resulting anim index

);

Easy! Arrays of scale, rotation, and translations keyframes were created
(using the D3DXKEY_VECTOR3 and the D3DXKEY_QUATERNION structures) and added to
the animation set using this function. In action, these functions could be used in
the following way:

76 Character Animation with Direct3D

//Create new Animation set

D3DXCreateKeyframedAnimationSet("AnimationSet1", 500,

D3DXPLAY_PINGPONG, 1, 0, NULL, &m_pAnimSet);

//Create Keyframes

D3DXKEY_VECTOR3 pos[3];

pos[0].Time = 0.0f;

pos[0].Value = D3DXVECTOR3(0.2f, 0.3f, 0.0f);

pos[1].Time = 1000.0f;

pos[1].Value = D3DXVECTOR3(0.8f, 0.5f, 0.0f);

pos[2].Time = 2000.0f;

pos[2].Value = D3DXVECTOR3(0.4f, 0.8f, 0.0f);

D3DXKEY_VECTOR3 sca[2];

sca[0].Time = 500.0f;

sca[0].Value = D3DXVECTOR3(1.0f, 1.0f, 1.0f);

sca[1].Time = 1500.0f;

sca[1].Value = D3DXVECTOR3(4.0f, 4.0f, 4.0f);

//Register Keyframes

m_pAnimSet->RegisterAnimationSRTKeys(

"Animation1", 2, 0, 3, sca, NULL, pos, 0);

This code creates an animation sequence with ping-pong playback, using both
position and scale elements. To calculate the timestamp of a certain animation key,
you need to retrieve the animation’s amount of ticks per second. For that you can
use the following function defined in the ID3DXKeyframedAnimationSet interface:

DOUBLE GetSourceTicksPerSecond();

The function can be used like this to calculate the timestamp of a new anima-
tion key:

D3DXKEY_VECTOR3 aKey;

aKey.Value = D3DXVECTOR3(0.2f, 1.5f, -2.3f);

aKey.Time = 2.5f * aAnimSet->GetSourceTicksPerSecond();

This code creates a new position key and sets the time stamp of the key to 2.5
seconds. It is very seldom you need to manually create animation keys like this, but the
knowledge of how to do so will come in handy in the next chapter when animation
callback events are covered. Anyway, once an animation like this has been created, you
need a way to read position, rotation, and scale data from the animation for any given
time step. For this purpose you can use the following function:

Chapter 4 Skeletal Animation 77

HRESULT GetSRT(

DOUBLE PeriodicPosition, //Time step

UINT Animation, //Animation index

D3DXVECTOR3 * pScale, //Scale output

D3DXQUATERNION * pRotation, //Rotation output

D3DXVECTOR3 * pTranslation //Translation output

);

This function takes a time step and an animation index as input (remember that
an animation set can contain several animations). As output from this function, you
get scale, rotation, and translation elements.

78 Character Animation with Direct3D

EXAMPLE 4.1

Check out Example 4.1 on the CD-ROM. In it, an ANIMATION class is created,
encapsulating an ID3DXKeyframedAnimationSet object. The ANIMATION

class creates an animation, queries it during runtime, and then draws a simple ani-
mated square on the screen. Albeit not the most visually appealing example, study it
nevertheless and play with the different animation options.

THE ID3DXANIMATIONCONTROLLER INTERFACE

Okay, you already know how to create a set of different animations. Why is an an-
imation controller interface needed? Well, the ID3DXAnimationController interface
controls all aspects of keyframed animation. It deals with anything from setting the
active animation to blending multiple animations, animation callbacks, and so on
(more on this in Chapter 5). In this chapter you’ll learn how to obtain this interface
as well as the functions needed to control the basic aspects of character animation.

LOADING THE ANIMATION DATA

You have already come in contact with the function used to load the ID3DXAnimation-
Controller object in the previous chapter. If you remember, the D3DXLoadMesh-
HierarchyFromX() function was used to load the bone hierarchy from an .x file. One of
the output parameters from this function is an ID3DXAnimationController object
containing all the animation data stored with the model. This data is loaded like this:

ID3DXAnimationController *m_pAnimControl = NULL;

D3DXFRAME *m_pRootBone = NULL;

D3DXLoadMeshHierarchyFromX("some_X_file.x",

D3DXMESH_MANAGED,

pDevice,

&someHierarchy,

NULL,

&m_pRootBone,

&m_pAnimControl);

This code loads the bone hierarchy and its meshes and stores in the m_pRootBone
variable. It also loads the animation data affecting this bone hierarchy in the m_pAnim-
Control variable. It is now through this animation controller that you can set active
animations for the character as well as update the active time, etc. The ID3DXAnima-
tionController contains several animation sets (as covered in the previous section).
The difference between these animation sets and those created earlier is that these are
directly connected to the transformation matrices of the character bones. Here’s how
you would obtain any animations stored in an ID3DXAnimationController:

void SkinnedMesh::GetAnimations(vector<string> &animations)

{

ID3DXAnimationSet *anim = NULL;

for(int i=0;i<(int)m_pAnimControl-

>GetMaxNumAnimationSets();i++)

Chapter 4 Skeletal Animation 79

{

anim = NULL;

m_pAnimControl->GetAnimationSet(i, &anim);

if(anim != NULL)

{

animations.push_back(anim->GetName());

anim->Release();

}

}

}

This function added to the SKINNEDMESH class fills a vector with all the names of
the animation sets stored in the character’s ID3DXAnimationController. First the
GetMaxNumAnimationSets() function is used to query the number of animation sets,
and then the GetAnimationSet() function can be used to get an actual animation set.

An ID3DXAnimationController object has several tracks, where each track is a
slot for an animation set. This means that you can have several active animations at
the same time, and even blend between them. The animation controller’s tracks will
be covered in more detail in the next chapter. For now, just assume that you have
only one track with one active animation. In this case you set the active animation
for a track using this function:

HRESULT SetTrackAnimationSet(

UINT Track, //Track index

LPD3DXANIMATIONSET pAnimSet //Animation set

);

To set which animation to play, simply use the GetAnimationSet() function to
retrieve the animation set, and then use the SetTrackAnimationSet() to activate it.
Once you’ve set the animation set for one (or more) tracks, you’re ready to start the
actual animation. You can update/play the animations using the following function:

HRESULT AdvanceTime(

DOUBLE TimeDelta, //Time to advance animation with

LPD3DXANIMATIONCALLBACKHANDLER pCallbackHandler //(next chapter)

);

80 Character Animation with Direct3D

The AdvanceTime() function only updates the local transformation matrices of the
bones. Remember that you need to update the combined transformation matrices
for all the bones after you’ve called this function, since these are the ones used in the
matrix palette. In the examples, this can be done by calling the UpdateMatrices()
function in the SKINNEDMESH class.

Chapter 4 Skeletal Animation 81

EXAMPLE 4.2

In this next example you will finally see the Soldier move. Example 4.2
encapsulates the ID3DXAnimationController in the SKINNEDMESH class. It

also implements a few functions to help us set the active animation, advance time, etc.
Pressing the space bar while running this example will let you see the underlying bone
hierarchy and how it is animated.

82 Character Animation with Direct3D

MULTIPLE ANIMATION CONTROLLERS

So far, so good. You have one mesh, one animation controller, and, all in all, one
working character. What if you need two characters? Hmmm… The naïve way
would be to have two meshes and two animation controllers. No real problem with
that. However, what if you need an army? Clearly, having one mesh for each soldier
instance wouldn’t be the smartest approach. The solution lies in the fact that you
can clone the character’s animation controller using the following function:

HRESULT CloneAnimationController(

UINT MaxNumAnimationOutputs, //Num outputs (i.e. bones)

UINT MaxNumAnimationSets, //Num animation sets

UINT MaxNumTracks, //Num tracks

UINT MaxNumEvents, //Num events

LPD3DXANIMATIONCONTROLLER * ppAnimController //Anim controller copy

);

Once a clone has been created from an animation controller, it keeps an inde-
pendent time count and active sets of animations, etc. This means that you should
copy only the animation controller rather than the whole bone structure when you
want to create multiple instances of a character. When rendering multiple instances
of the same skinned mesh, follow this outline:

1. Call AdvanceTime() for the active animation controller.
2. Calculate the world matrix for this character instance.
3. Update the combined transformation matrices for the skinned mesh with

the world matrix.
4. Render the skinned mesh.
5. Repeat with the next character instance.

CONCLUSIONS

This chapter started with the keyframe, worked up to a collection of animations
stored in the ID3DXKeyframedAnimationSet() interface, and finally covered the
ID3DXAnimationController interface. You should now be comfortable with how an-
imations are built from the ground up, even though in most cases you get them
served on a silver platter. It never hurts to know how the animation pipeline works,
especially later on when more advanced topics like dynamic animation are covered.

In this chapter you had your first look at the ID3DXAnimationController interface,
but it won’t be your last. The following chapter looks at some of the more advanced
things you can do with this interface.

Chapter 4 Skeletal Animation 83

EXAMPLE 4.3

Example 4.3 shows you in practice how this is done. In this example, four
instances of the Soldier are rendered with random animations. Try to add

more! A whole army!

CHAPTER 4 EXERCISES

Expand the Animation class created in Example 4.1. Make it easy to add new
keyframes, set animation speed, etc.
Connect the Animation class to a mesh. Make use of the scale, rotation, and
translation you get from the animation set.
Play around with the ID3DXAnimationController you retrieved from the Soldier.
See if you can create a new animation set in code and register it with the con-
troller. (Hint: The RegisterAnimationSet() and RegisterAnimationOutput()
functions should prove useful).

84 Character Animation with Direct3D

85

Advanced Skeletal
Animation Techniques

5

In this chapter I will dive deeper into some more advanced skeletal animation
techniques. The first thing you will learn is how to blend several animations
together. This is useful, for example, when you want smooth transitions between
different animations/poses. The technique can also be used to create completely
new animations. One example of this might be if you have a Run animation and
a Fire-Rifle animation. By blending them you could have a Run-and-Fire-Rifle
animation without having to actually animate this by hand in your 3D program.
Also, at the end of this chapter, you’ll look into the topic of motion capture. This
chapter covers the following topics:

Track structure
Blending animations
Compressing animation sets
Animation callbacks
Motion capture

THE TRACK STRUCTURE

Before fading animations in/out, blending animations together, and more, one
thing needs to be covered: the tracks in an animation controller. This was briefly
touched on in the previous chapter, but I didn’t really go in to any details. You
may remember that the number of tracks was specified when creating a new ani-
mation controller using the D3DXCreateAnimationController() function. A track
was also used to activate a certain animation for the character using the animation
controller’s SetTrackAnimationSet() function. As mentioned, an animation con-
troller can contain several tracks. See Table 5.1 for a list of properties that you can
manipulate for each track.

The Position, Weight, and Speed properties are all quite easy to understand.
The priority of a track can be set to either D3DXPRIORITY_LOW or D3DXPRIORITY_HIGH.
High-priority tracks are blended together first before adding the low-priority
tracks. This could also be used to turn off low-priority tracks when a character is far
away from the player/camera.

86 Character Animation with Direct3D

TABLE 5.1 ANIMATION TRACK PROPERTIES

Separate multiple permissions with a comma and no spaces. Here is an example:

stsadm -o managepermissionpolicylevel -url http://barcelona -name "Book

Example" -add -description “Example from book" -grantpermissions

UpdatePersonalWebParts,ManageLists

You can verify the creation of the policy in Central Administration. Once the
policy is created, you can use changepermissionpolicy to alter the permissions or
use deletepermissionpolicy to remove it completely. You can also use addpermis-
sionpolicy to assign your policy or any of the included ones to a user or group.

Property Function Description

Animation Set SetTrackAnimationSet() A pointer to an animation set

Enabled SetTrackEnable() Enables/disables the track

Position SetTrackPosition() Track position (time) of the animation set

Weight SetTrackWeight() The weight of the track (used when
blending animations)

Speed SetTrackSpeed() The speed of the track

Priority SetTrackPriority() The priority of the track (can be set to low
or high)

To better illustrate the way you use tracks to blend animations, consider the
following example. Figure 5.1 shows three animation sets, each containing a separate
animation with details as shown.

Figure 5.1 shows the Walk, Run, and Sneeze animations. Both the Walk and the
Run animations are looping animations, meaning that they will go on forever,
whereas the Sneeze animation happens only once and then stops. Figure 5.2 shows
how it would look if you assigned each animation to a separate track.

You are not limited to having a different animation set in each track. Some-
times it might make sense to have the same animation assigned to more than one
track. Check out Figure 5.3, for example; the Walk animation has been assigned to
both Track 1 and Track 2, the difference being that the track speed in Track 2 is
200% (i.e., the animation will play twice as fast).

Chapter 5 Advanced Skeletal Animation Techniques 87

FIGURE 5.1
Three example animation sets.

FIGURE 5.2
Three animation sets assigned to a separate animation track.

FIGURE 5.3
The track’s speed property affects the animation playback.

To retrieve the current state of a track, you can use the following animation
controller function:

HRESULT GetTrackDesc(

UINT Track, //Track to retrieve info about

LPD3DXTRACK_DESC pDesc //Track description

);

This function will fill the following structure:

struct D3DXTRACK_DESC {

D3DXPRIORITY_TYPE Priority;

FLOAT Weight;

FLOAT Speed;

DOUBLE Position;

BOOL Enable;

};

The only piece of information this structure does not contain about a track is
the current animation set assigned to it. For that you can use this function defined
in the ID3DXAnimationController interface:

HRESULT GetTrackAnimationSet(

UINT Track,

LPD3DXANIMATIONSET * ppAnimSet

);

The animation controller’s GetTrackAnimationSet() function returns a pointer
to the animation set currently assigned to a specific track. Alright, now you know
how to query all the necessary track properties of an animation controller. It’s time
to move on and try to blend two tracks together.

BLENDING MULTIPLE ANIMATIONS

To blend several animations together, you need to retrieve the different animation
sets you want to use. Then you assign them to different tracks and set the weights,
priorities, and speed of the different tracks. The following piece of code randomly
blends two animations together:

88 Character Animation with Direct3D

//Reset the animation controller's time

m_animController->ResetTime();

//Get two random animations

int numAnimations = m_animController->GetMaxNumAnimationSets();

ID3DXAnimationSet* anim1 = NULL;

ID3DXAnimationSet* anim2 = NULL;

m_animController->GetAnimationSet(rand()%numAnimations, &anim1);

m_animController->GetAnimationSet(rand()%numAnimations, &anim2);

//Assign them to two different tracks

m_animController->SetTrackAnimationSet(0, anim1);

m_animController->SetTrackAnimationSet(1, anim2);

//Set random weight

float w = (rand()%1000) / 1000.0f;

m_animController->SetTrackWeight(0, w);

m_animController->SetTrackWeight(1, 1.0f - w);

//Set random speed (0 - 200%)

m_animController->SetTrackSpeed(0, (rand()%1000) / 500.0f);

m_animController->SetTrackSpeed(1, (rand()%1000) / 500.0f);

//Set track priorities

m_animController->SetTrackPriority(0, D3DXPRIORITY_HIGH);

m_animController->SetTrackPriority(1, D3DXPRIORITY_HIGH);

//Enable tracks

m_animController->SetTrackEnable(0, true);

m_animController->SetTrackEnable(1, true);

If two animations try to animate the same bone, their respective weights will
determine how the bone is animated. For example, if one animation track has a
weight of 5 and another track has a weight of 2.5, then any bone affected by both
tracks will be affected twice as much by the first track compared to the second.

Chapter 5 Advanced Skeletal Animation Techniques 89

COMPRESSING ANIMATION SETS

You have already gotten to know the ID3DXKeyframedAnimationSet interface a little
bit, and learned how you can add keyframes to it. In large games with huge
amounts of animation data, it is prudent to sometimes compress the animation
data to allow more of it. Again, the D3DX library is a great help. For compressed
animation sets, you can use the ID3DXCompressedAnimationSet interface. In order to
convert a keyframed animation set to a compressed animation set, you need to call
the Compress() function of the keyframed animation set you want to compress.

HRESULT Compress(

DWORD Flags, //Compression flags

FLOAT Lossiness, //Animation Lossiness

LPD3DXFRAME pHierarchy, //Bone hierarchy

LPD3DXBUFFER * ppCompressedData //Compressed data output

);

90 Character Animation with Direct3D

EXAMPLE 5.1

In Example 5.1 you can see the animation blending in action. Try to expand
this example yourself to blend together more than just two animations!

The compression flag can be either D3DXCOMPRESS_DEFAULT, which is a fast
compression scheme, or D3DXCOMPRESS_STRONG, which is a slower but more accu-
rate compression method. (Note: Strong compression is not yet supported, but
perhaps in future releases of DirectX it will be.) You can also set the desired lossi-
ness (i.e., how much the compression scheme is allowed to change the data) as a
value between zero and one. As output from this function, you do not get an
ID3DXCompressedAnimationSet—instead, you get a chunk of data containing all
the compressed animations, their keyframes, etc. After you have this compressed
data, you can create a new compressed animation set using the following D3DX
library function:

HRESULT D3DXCreateCompressedAnimationSet(

LPCSTR pName,

DOUBLE TicksPerSecond,

D3DXPLAYBACK_TYPE Playback,

LPD3DXBUFFER pCompressedData,

UINT NumCallbackKeys,

CONST LPD3DXKEY_CALLBACK * pCallKeys,

LPD3DXCOMPRESSEDANIMATIONSET * ppAnimationSet

);

You supply the name, ticks per second, playback type, the compressed anima-
tion data, and optional callback keys (more on these later), and you’ll get the new
compressed animation set as a result. Here’s some code showing how to use these
functions to convert a keyframed animation set to a compressed animation set.

ID3DXKeyframedAnimationSet* animSet = NULL;

// ...

//Create or load the animation set you want to convert here...

// ...

//Compress the animation set

ID3DXBuffer* compressedData = NULL;

animSet->Compress(D3DXCOMPRESS_DEFAULT, 0.5f, NULL, &compressedData);

// Create the compressed animation set

ID3DXCompressedAnimationSet* compressedAnimSet = NULL;

D3DXCreateCompressedAnimationSet(animSet->GetName(),

animSet->GetSourceTicksPerSecond(),

animSet->GetPlaybackType(),

compressedData,

Chapter 5 Advanced Skeletal Animation Techniques 91

0, NULL,

&compressedAnimSet);

//Release the compressed data

compressedData->Release();

As you can see, the name, playback type, and ticks per second are taken from
the original animation set. You just supply the additional compressed animation
data and as a result you get your compressed animation set.

After you have compressed an animation set, you no longer have direct access to the
keyframes stored in it.

This might seem like a lot of trouble to go through just to decrease the size of
the animation set. But once the number of animations starts increasing drastically,
compressing your animation sets is a good trick to have up your sleeve.

ANIMATION CALLBACK EVENTS

Animation callbacks are events that are synchronized with your animations. One
example might be playing the sound of a footstep. Imagine that you have a walk
animation like the one earlier in this chapter. Remember that you can play this
animation with different speeds. If you had to connect the sound of a footstep to the
animation manually, you would have to go through all kinds of worry to calculate
the times where you need to play the sound. This is where animation callbacks come
into the picture. You create a Callback key and add it to the animation set. Every time
the animation passes this Callback key, it generates an event where the sound is
played. You can also customize this event—for example, to play different sounds if
the character is stepping on gravel rather than a wooden surface. The Callback keys
are defined using the following structure:

struct D3DXKEY_CALLBACK {

FLOAT Time; //Time the callback occurs

LPVOID pCallbackData; //User defined callback data

};

The D3DXKEY_CALLBACK structure contains one float value containing the time-
stamp, and one pointer to any user defined structure. As mentioned in the previous
chapter, the timestamps of these animation key structures are in ticks, not seconds.

92 Character Animation with Direct3D

So remember to multiply the actual time (in seconds) you want the event to occur
with the animation’s ticks per seconds value.

struct A_USER_DEFINED_STRUCT

{

int m_someValue;

};

//A global instance of the user defined structure

A_USER_DEFINED_STRUCT userData;

D3DXKEY_CALLBACK CreateACallBackKey(float time)

{

D3DXKEY_CALLBACK key;

key.Time = time;

key.pCallbackData = (void*)&userData;

return key;

}

This code creates a user defined structure, and defines a function that creates a
new callback key linked to this user defined structure. After you’ve added lots of
callback events, you need to create your own callback handler to deal with the
events as they come in. To do this you need to implement your own version of the
ID3DXAnimationCallbackHandler interface.

class CallbackHandler : public ID3DXAnimationCallbackHandler

{

public:

HRESULT CALLBACK HandleCallback(THIS_ UINT Track,

LPVOID pCallbackData)

{

//Access the user defined data linked to the callback key

A_USER_DEFINED_STRUCT *u;

u = (A_USER_DEFINED_STRUCT*)pCallbackData;

if(u->m_someValue == 0)

{

//Do something

}

else

{

//Do something else...

}

Chapter 5 Advanced Skeletal Animation Techniques 93

94 Character Animation with Direct3D

return D3D_OK;

}

};

Here you can see how you can implement the ID3DXAnimationCallbackHandler
interface to deal with your own user defined data structures. All event handling is
done in the HandleCallback() function, which is the only function defined in the
ID3DXAnimationCallbackHandler interface. Okay, so now you know how to create
callback keys and how to handle them once they have triggered an event, but what
hasn’t been covered yet is how to add new callback keys to an existing animation.

//Get a keyframed animation set

ID3DXKeyframedAnimationSet *animSet = NULL;

m_animController->GetAnimationSet(0, (ID3DXAnimationSet**)&animSet);

//Create one callback key

D3DXKEY_CALLBACK key[1];

//Fill the callback key time + callback data here...

//Add callback key to animation set

animSet->SetCallbackKey(0, key);

The SetCallbackKey() function adds a callback key to a normal keyframed an-
imation set. You can also add callback keys to a compressed animation set like this:

//Get a keyframed animation set

ID3DXKeyframedAnimationSet* animSet = NULL;

m_animController->GetAnimationSet(0, (ID3DXAnimationSet**)&animSet);

//Compress the animation set

ID3DXBuffer* compressedData = NULL;

animSet->Compress(D3DXCOMPRESS_DEFAULT, 0.5f, NULL, &compressedData);

//Create one callback key

const UINT numCallbacks = 1;

D3DXKEY_CALLBACK keys[numCallbacks];

//Create callback key(s) and set time + callback data here...

//Create a new compressed animation set

ID3DXCompressedAnimationSet* compressedAnimSet = NULL;

D3DXCreateCompressedAnimationSet(animSet->GetName(),

animSet->GetSourceTicksPerSecond(),

animSet->GetPlaybackType(),

compressedData,

numCallbacks,

keys,

&compressedAnimSet);

//Release compressed data

compressedData->Release();

//Delete the old keyframed animation set.

m_animController->UnregisterAnimationSet(animSet);

animSet->Release();

// And then add the new compressed animation set.

m_animController->RegisterAnimationSet(compressedAnimSet);

Like before, when you compress an animation set, you do the same exact steps.
Only this time you also supply the D3DXCreateCompressedAnimationSet() function
with a set of callback keys. After the new compressed animation set has been created,
you unregister the old animation set in the animation controller and register the new
compressed animation set in its place. The last thing before it all comes together is
to send the callback handler to the animation controller’s AdvanceTime() function.

m_animController->AdvanceTime(m_deltaTime, &callbackHandler);

This essentially means you can also have different callback handlers handling
the same callback events. So, for example, if your character were wounded, you
could have a different callback handler than when the character is healthy. In other
words, different code could be executed every time a certain callback event is trig-
gered, depending on what callback handler you are using.

Chapter 5 Advanced Skeletal Animation Techniques 95

MOTION CAPTURE (MOCAP)

This section provides a brief glimpse into the advanced topic of motion capture,
also known as Mocap. Motion capture is the process of recording movements from
real-life actors and applying these movements/animations to 3D characters. The
use of motion capture is most common in the movie and game industry. With
Mocap equipment you can produce much more life-like animations than you can
with more traditional 3D animation tools. The rates with which you can create new
character animations are also so much faster than in the traditional way.

There are a few different types of Mocap systems. Generally speaking, they can
be divided into three categories: optical, magnetic, and mechanical. Although these
systems have many differences, they also have some general things in common. They
are all ridiculously expensive, require lots of technical expertise, and also require lots

96 Character Animation with Direct3D

EXAMPLE 5.2

Example 5.2 shows you how to implement animation set compression as
well as how to add callback keys, create a custom callback handler, etc. As

always, study the example well and make sure you understand it before moving on.

of calibration. Because of this, it is very common that game companies (and other
companies) outsource their motion capture needs to studios specializing in Mocap.
At the end of this chapter is an interview with some of the folks of Lapland Studio
who do a lot of Mocap for other companies.

OPTICAL MOTION CAPTURE SYSTEMS

In a nutshell, an optical Mocap system works with several cameras mounted on the
walls of a room facing the center. These cameras are usually very expensive high-
contrast cameras. An actor is then dressed in a suit that has a large number of small
white balls (markers) attached to it. These markers are captured by the camera,
which uses triangulation to calculate the position of the marker in 3D space. Figure
5.4 shows how a system like this could be set up. The markers usually come in two
flavors, depending on the system: active (containing a small infra-red light) and
non-active (a reflective marker).

Figure 5.4 shows only three cameras (which is the theoretical minimum for a
system like this to work); however, the more cameras you have, the more accurate
and robust the system will be. Figure 5.5 shows what the images from the three
cameras in Figure 5.4 would look like.

Chapter 5 Advanced Skeletal Animation Techniques 97

FIGURE 5.4
An optical Mocap system.

Even from these simple images you can easily see the outline of the person
wearing the markers. It becomes even more apparent when you are watching a live
feed of these markers moving. Once the images from all the cameras have been used
to calculate the 3D positions of the many markers, these are mapped onto a virtual
skeleton. The motion of this virtual skeleton is then exported and can be used in a
3D modeling software, and finally in a game or a movie.

Marker-Less Motion Capture

Lately there has been a lot of research in the field of marker-less motion capture. At
the time of writing, this technology is just beginning to make its way into the market
[1]. Essentially, marker-less Mocap works like any other optical system but without
markers. The motion is extracted using multiple cameras and advanced computer
vision algorithms focusing on certain spots of your body, contour detection, etc.
Marker-less Mocap is especially good for things like facial animation [2].

MAGNETIC MOTION CAPTURE SYSTEMS

Magnetic motion capture systems work almost like optical systems. Instead of visual
markers, wired sensors are attached to a person’s limbs. These sensors are connected
via a shielded cable to a control unit that measures their position and orientation in
a low-frequency magnetic field. The electronic magnetic field is created by a static
magnetic emitter. The great thing about magnetic Mocap is that it also gives you the
orientation of the sensor (something which had to be calculated off-line with optical
systems). This makes magnetic Mocap systems good for real-time motion capture
(used in different live TV shows, conventions, and so on). One big downside of
magnetic Mocap systems is that they are wired (and the sensors can also weigh quite
a bit). This means that they are cumbersome and restrict the actor’s movement while

98 Character Animation with Direct3D

FIGURE 5.5
Images recorded from an optical Mocap system.

recording. Another big downside of magnetic Mocap systems is that they are very
sensitive to noise and other magnetic fields. Any metallic surface will interfere with
the magnetic field and cause faulty readings from the sensors. The components of a
magnetic motion capture system can be seen in Figure 5.6.

MECHANICAL MOTION CAPTURE SYSTEMS

Mechanical motion capture systems usually build on an exoskeleton worn by the
actor. The different joint orientations of the exoskeleton are recorded and used to
produce the Mocap data. The major downside to this technology is that no position
data is recorded, so things like jumping, realistic running animations, etc. can’t be
recorded directly but need some manual touch up afterward. Another downside to
this technology is that the exoskeleton often tends to be quite bulky and can restrict
the actor somewhat. However, not all is bad about a mechanical Mocap system. The
fact that it is mechanical means that it doesn’t suffer from interference, occlusion,
and similar problems. There are also examples of mechanical Mocap systems that
have the recording computer and power supply in a backpack, effectively making
the suit completely independent of location. You can see an example a mechanical
Mocap system with an exoskeleton in Figure 5.7.

Chapter 5 Advanced Skeletal Animation Techniques 99

FIGURE 5.6
A magnetic Mocap system.

A more resent implementation of motion capture using a body suit has been
done by Moven [3]. They have built a slim suit with miniature inertial sensors,
which aren’t cumbersome at all. Since this system isn’t relying on cameras, etc., it
has the great advantage that it can be used anywhere.

COMPARISON OF THE DIFFERENT MOCAP SYSTEMS

Needless to say, all these technologies have their own pros and cons. There are also
several variations of each of these, all with their own individual strengths and
weaknesses. Table 5.2 provides an overview of the pros and cons of each system.

100 Character Animation with Direct3D

FIGURE 5.7
A mechanical Mocap system.

Despite the shortcomings of optical systems, their pros outweigh their cons
when it comes to Mocap for games and movies. In time, marker-less Mocap may
replace regular optical systems. For now, at least, it seems that the high sampling
rate and high accuracy is what makes the optical technology the best approach for
game character motion capture.

LAPLAND STUDIO INTERVIEW

I had the opportunity to visit a Lapland Studio’s motion capture studio in
Rovaniemi, Finland. They have a VICON [4] optical motion capture system
using 14 cameras and a capture area of 4 x 4 x 3 meters. The following interview
is an excerpt from the discussion I had with Jari Niskanen and Jouko Manninen,
both CG artists at Lapland Studio.

Chapter 5 Advanced Skeletal Animation Techniques 101

TABLE 5.2 MOCAP TECHNOLOGY COMPARISON

Separate multiple permissions with a comma and no spaces. Here is an example:

stsadm -o managepermissionpolicylevel -url http://barcelona -name "Book

Example" -add -description “Example from book" -grantpermissions

UpdatePersonalWebParts,ManageLists

You can verify the creation of the policy in Central Administration. Once the
policy is created, you can use changepermissionpolicy to alter the permissions or
use deletepermissionpolicy to remove it completely. You can also use addpermis-
sionpolicy to assign your policy or any of the included ones to a user or group.

Optical Magnetic Mechanical

Pros Lightweight Real-Time Real-Time

Very Accurate Relatively Cheap No Interference

High-Sampling Speed

Large Capture Area

Cons Sensitive to Light Sensitive to Metal No Position Data

Sensitive to Occlusions Restricts Movement Restricts Movement

Heavy Post-Processing Low-Sampling Speed

Expensive

102 Character Animation with Direct3D

What sort of system do you have here at Lapland Studio?

JM: We use an optical system with 14 cameras. We also have a magnetic system that
we use from time to time. Actually, once we had this project where we used both the
optical and the magnetic system in the same capture.

Was there a reason you chose to go with an optical system?

JM: That was not our decision. It was our CEO’s, who started this company.

JN: He bought both the optical and the magnetic system, but so far we have almost
only used the optical system, since the magnetic system is so limited. The magnetic
system doesn’t record any movement, just limb rotation I think.

JM: I think the idea behind the magnetic system is that we could use it for real-time
stuff, in conferences, etcetera. But there hasn’t been much need for it so far.

Does this system require exactly 14 cameras, or does it work with less?

JM: Yeah, actually, it can be. I don’t know what the minimum is. In theory I guess you
could use just three cameras, but I’m not sure how accurate it would be then.

Are there any other limitations to this system except occlusion?

JN: Well, yeah, the recording space. Since the area itself limits the movements that
you can make. This one is quite big. It is 4 x 4 meters and 3 meters high. It’s big
enough that you can run through it and capture one loop of running animation.

JM: We could make it bigger though if we would change the lenses of the cameras and
so on. We can also change the shape of the recording area as needed for a special
movement, making it narrower but longer, etcetera.

JM: About other limitations…I don’t know. It works well.

What is the sampling rate of this system?

JM: Well, usually we record at 120 to 150 samples per second. But we can also go
higher than that. We can go up to 200.

Can you record movement from animals and other skeletal structures as well?

JN: Yeah, animals or anything that moves. At some point we where talking about
capturing movement from a whip, for example. So it doesn’t matter what shape or
body it is.

JM: Yeah, it doesn’t actually matter what thing it is, since it is easy to create any type
of skeletal template and record data to it. We often use props for swords, rifles, or
other things [Figure 5.8]. It is usually enough to have just three markers on the prop
to get the orientation of it, but it is good if it has more.

Chapter 5 Advanced Skeletal Animation Techniques 103

Does it take long time to build a new template?

JM: No, it doesn’t take very long.

How many markers are you using with this system per person?

JM: We have 46 markers because of the template we use. But there are lots of dif-
ferent templates you can use. You also make custom configurations for whatever you
need. For human characters, the 46-marker template works well.

What about multiple actors?

JM: Well, sometimes it happens that we have multiple actors. We have had up to three
actors at a time in a single motion capture. If we would try to have more, we would
have a problem with the capture area. Even with three persons it’s quite hard, since

FIGURE 5.8
Mocap can also record the position/orientation of a prop (shotgun).

continued

104 Character Animation with Direct3D

they cannot really run around in it. As for the capture there is no problem; the software
can handle it quite well. But of course with more people comes more occlusions
when one actor is occluded by another, and so on. We also just have markers enough
for three people at the moment.

But I guess for games it is always just one actor at a time?

JN: Yeah, that’s right.

Is it only body motion capture you do here at Lapland Studio?

JM: Usually we have done just the body capture, but facial motion capture is some-
thing that we would like to do more. We are not really sure how accurate this system
is for facial Mocap. It should be, but it needs some expertise on that area.

JN: There was this one test we did. But it didn’t come out very well. I’m not sure if the
problem was with us or with the equipment. There’s a problem with the accuracy of
the camera, since the markers are so close to each other. So at this point we stick to
more traditional body motion capture.

On average, how much time do you usually spend to clean up one hour of
motion capture data?

JM: The shots are so short, actually. I don’t think we’ve had very long shots. Usually
if we have a capture day we can get around 30 to 60 takes. Then we will have to work
2 to 3 days at least to get some kind of result.

JN: It also depends a lot on the project. If, for example, you need to make looping
animation and stuff like that, it can take longer.

JM: Yeah, looping in game systems is really common, and that takes time even
though Motion Builder is a really good tool to make that.

JN: Usually you try to find two poses in the looping animation that look similar. Then
you copy one to replace the other and try to clean it up as best you can. It requires a
lot of tweaking, since it is natural motion that you get from motion capture. You need
to consider things like the direction of the movement, etcetera, to make the loop
seem continuous.

Do you also do transitions between animations—say, transitions from a walk
animation to a run animation?

JN: Yeah, Motion Builder is a pretty good tool for things like that.

JM: If we do some 3D animation we might do it for that, but for games and so on,
then we usually just give animation loops like stand, walk, run, etcetera, and they
[game companies] do the transitions themselves.

Chapter 5 Advanced Skeletal Animation Techniques 105

What kind of software do you use?

JN: We use Motion Builder in-between the VICON software and 3D Studio Max.
Basically, Motion Builder is our animation tool. With it you just name the bones,
click a button, and your rig is animated. We also have some tools for reducing the
amount of keyframes and compressing the animation data. But often it needs
most of the keyframes, since it can cause sliding walk animations, for example, if
the rotation of the leg bones doesn’t match the translation of the hip bone.

So I guess that means that when you make motion-captured animations, the
file size tends to be bigger than with animations created by an artist?

JN: Yeah, that’s basically correct. We have been trying to figure out smart ways how
to reduce as much keyframes as possible but it tends to be tedious work.

JM: We have a tool that takes the greatest movements and creates keyframes from
these, and from this we get quite small amount of keyframes. However, this tends to
remove a lot of the small tiny movements which make the movement realistic to
begin with.

Which is the most technically difficult motion capture you have done here?

JN: We did this one motion capture where a guy was supposed to stand on a 10-meter
high pole and fall backwards. The way we captured it was to put some mattresses on
the floor and let the actor stand on a short bench and then fall backwards onto the
mattresses. That was all we could get from the motion capture for that scene. The rest
of the 10-meter fall we had to do by hand. [Figure 5.9 shows another example of an
actor jumping.]

JM: Often problems occur when an actor is lying down on the floor. Then several
markers are occluded from the camera by the actor’s body. Technically, shots with
many occlusions cause us the most headaches. For example, two guys wrestling
would be a nightmare to motion capture. Then you get problems like bone swapping,
since the markers of the two persons would be really close to each other and the sys-
tem might have problems telling them apart. The bones can of course be separated
manually, but it is a slow process.

continued

106 Character Animation with Direct3D

How is the difference in size between actors and models handled?

JN: Basically, there are no limits there at all. We have even had a human actor do the
motions for a T-Rex once. You will, of course, have to make adjustments if you record
a very small person and use the recorded motions for a large game character. Often
small people and large people move completely different. Another funny thing is that
you can really see from the motion whether the actor is a woman or a man. One time
we tried to capture motion for a 3D character, a woman, and I was acting. That’s
actually somewhat of an inside joke here now. An outsider came to look at the final
animation and he immediately said that it has got to be a man.

JM: That’s the cool accuracy of this system. If you know the actor personally, you can
see that it is him or her just from watching the motion capture data. There’s more
emotion in movements than you might think, and you can really see the difference
when you compare motion capture animation to traditional artist created animation.

FIGURE 5.9
Mocap with actor jumping.

CONCLUSIONS

In this chapter you learned about some more advanced topics of character
animation. You learned about animation blending, which is something you’ll
definitely need if you ever aim to create a realistic character. With it, you can
create new animations by blending two others together. You can also create a
transition between two animations by blending between them. Another advanced
topic covered in this chapter was animation callbacks, with which you can time
events in your game to when a specific animation occurs. If you made a fighting
game for instance, you might want to time the “punch” sound to a specific time
in the punch animation. Lastly, the topic of motion capture and its variations
were briefly covered. That about wraps up the skeletal animation part of
this book, which the last three chapters have focused on. Now it’s time to turn to
dynamic animation and look at implementing a ragdoll system.

CHAPTER 5 EXERCISES

Try modifying Example 5.1 so that you run the same animation in two different
tracks, with different weights and slightly different speeds. See what happens?
Create animation callbacks for the footsteps in the Soldier’s walk animation.

FURTHER READING

[1] http://www.organicmotion.com

[2] http://www.mova.com

[3] http://www.moven.com

[4] http://www.vicon.com

Chapter 5 Advanced Skeletal Animation Techniques 107

http://www.organicmotion.com
http://www.mova.com
http://www.moven.com
http://www.vicon.com

This page intentionally left blank

109

Physics Primer6

As is common practice with most programming books that include only one chapter
covering physics, I’ll start this one with a disclaimer. This book is not about physics!
There are books focusing solely on the topic of game physics. However, since I will be
covering ragdoll animations in this book, I need cover the “bare bones,” so to speak,
of creating a physics engine. The physics engine demonstrated in this chapter builds
on simulating particles connected with springs. In this chapter you’ll learn about the
following topics:

Basics of rigid body physics
Quaternions
Oriented bounding boxes
Intersection tests
Simulating a particle
Simulating a spring

In the beginning of this chapter, many basic physical concepts will be covered. If you
are already comfortable with Newton’s three laws of motion, gravity, quaternions,
etc., feel free to skip ahead to the implementation part at the end of this chapter.

INTRODUCTION TO RIGID BODY PHYSICS

If you’ve never come across the topic of rigid bodies before, don’t worry; it is quite
easy to understand (even though it can be quite hard to simulate). A rigid body is by
definition a solid mass in space that does not change shape. A real-life basketball is
an example of a non-rigid body. The fact that the basketball is not rigid is what
causes it to bounce once it hits the floor. Instead, imagine a sphere the size of a
basketball in solid steel hitting a steel floor. Very likely there wouldn’t be a very large
bounce from a collision like this. This is because the steel sphere won’t change its
shape. It is rigid!

In computer graphics there are accurate mathematical systems where rigid
bodies are simulated colliding with the environment and with each other. In
games, however, this simulation has to be able to run in real time. This essentially
means several shortcuts need to be taken, and some serious optimizations must be
done in order to get it fast enough for real-time applications. So when making
physics engines for games, things like speed, stability, and appearance take prece-
dence over accuracy and realism.

Before I dive into rigid body physics, I’ll cover the basics of physics in general.
Over 300 years ago a fellow named Isaac Newton published a three-volume work
called Philosophiae Naturalis Principia Mathematica, or Principia for short. In
plain English, the title was “Mathematical Principles of Natural Philosophy” and
contained, as you may already know, Newton’s three laws of motion. The first of
the three volumes was called De motu corporum (“On the motion of bodies”), and
now, more than 300 years later, these laws are still used when simulating physics
in games. Table 6.1 shows a simplified version of Newton’s laws of motion.

110 Character Animation with Direct3D

The second law can also be described with the famous formula:

F = ma or a =
F
m

The force equals the mass of an object times its acceleration. However, more
often you are interested in the acceleration resulting from an external force, in which
case the acceleration a is the force F divided by an object’s mass m. Later on I’ll dis-
cuss how the acceleration of an object affects its velocity and its position. But first it
is time to cover some important concepts needed to create your own physics engine.

FORCES

As you may have seen in Newton’s three laws, there was a lot of talk about forces.
A force has both a magnitude and a direction. Imagine, for example, two equally
strong men pushing a box from opposite sides. Since the directions of their efforts
are opposing, the box won’t move an inch. However, if the two men were pushing
from the same side, the two forces would combine and the box would move in the
direction they are pushing. This little thought-experiment proves the fact that two
opposing forces cancel each other out.

The most common force you face on a daily basis is gravity (unless you happen
to be an astronaut). In his Principia, Newton also defined the law of gravity:

FG = G
m 1 � m 2

d 2

FG is the resulting gravitational force, G is the universal gravitational constant
[Wikipedia], and m1 and m2 are the masses of the two objects attracting each other.
Finally, d is the distance between the objects. Simply put: Two objects attract each
other with a force proportional to the product of their masses divided by the square
of the distance between them (quite a mouthful). Take the simple example of the
Sun and the Earth, as shown in Figure 6.1.

Chapter 6 Physics Primer 111

TABLE 6.1 NEWTON’S LAWS OF MOTION

1st Law: An object’s velocity will not change unless affected by an external force.

2nd Law: The acceleration of an object is proportional to the magnitude of the force acting
on the object and inversely proportional to its mass.

3rd Law: Every action has an equal and opposite reaction.

It might be hard to see from the numbers representing the mass of the Sun and
the Earth. But the Sun has 333,000 times more mass than the Earth and it represents
98% of all the mass in our solar system. This means that whatever the gravitational
force is between the Sun and the Earth, 99.9997% of that force affects the earth, and
0.0003% of it affects the sun. This gravitational force is the only thing keeping the
Earth in orbit around the Sun.

Now turn your attention to the Earth itself, where there’s a similar gravitational
force affecting all smaller objects on the Earth’s surface (for instance, an apple). Just
like in the example of the Sun and the Earth, each small object actually also attracts
the Earth toward it. However, this force is so small that it is negligible. This leaves
us with one force pulling all objects toward the Earth’s surface.

In games, this is almost always represented as a constant force in the negative
Y direction (and the curvature of the Earth is completely dismissed). Just as in real
life, games try to simulate the Earth’s gravitational pull (9.8 m/s2), making objects
behave as realistically as possible. Later on I’ll cover how we apply gravity to game
objects, updating their velocity and position over time.

That pretty much covers the gravitational force. However, there are plenty of
other non-constant forces in the world, such as wind, collision impacts, etc.—for
example, in an action game when a bullet hits an object, the bullet will affect
the object with a force proportional to its speed and mass. This brings us to the
different ways a force can affect an object.

THE EFFECT OF FORCES ON A RIGID BODY

Okay, so you know that there are different forces affecting an object (i.e., a rigid
body). The next thing to cover is how these bodies react when affected by an external
force. First, consider what happens to a rigid body’s position when you push or pull
it with an external force. Figure 6.2 shows an example.

112 Character Animation with Direct3D

FIGURE 6.1
Gravitational pull between the Earth and the Sun.

As you can see in Figure 6.2A, the body is being affected by two external forces
pushing at the object from different directions. Just like with the analogy of the two
men pushing a box, the rigid body will move over time in the combined direction of
the forces as long as the forces are applied. In this example you can see the center of
the rigid body’s mass represented as a cross. The forces in Figure 6.2 are pointing
straight at the object’s center of mass, resulting in the energy being used 100% to
move the object. However, this is of course not always the case; sometimes forces are
applied to an object causing it to spin, rather than to move linearly.

Try it yourself. Find a small object (like a pen) and poke it close to its center of
mass. No doubt the object will move in the direction you poked it. Try it again, but
this time poke it far from its center of gravity. This time the object will spin instead.
This phenomenon is shown Figure 6.3.

Chapter 6 Physics Primer 113

FIGURE 6.2
How a force affects the position of a rigid body.

FIGURE 6.3
How a force affects the orientation of a rigid body.

Just like in the previous case, when there are several forces affecting the orien-
tation of an object, the forces are all summed up before applying the final rotation
of the object. So far I have only been talking about objects in 2D space, but the
same fundamental reactions naturally occur with objects in 3D space as well. To
describe the orientation of an object in a physics simulation, you basically have
three different options:

Euler angles
Rotation matrix
Quaternions

If you have covered the basics of 3D math, you have probably come in contact
with Euler angles. Euler angles are easy to understand; you have one rotation value
for the yaw, pitch, and roll of an object. Even though the Euler angles are easy to
grasp, they come with some limitations such as Gimbal lock (covered in Chapter 4).
Another option is to use a rotation transformation matrix. Although this is an often
used option, it suffers from the fact that small imperfections creep in (due to
rounding of float values) and the matrix becomes skewed over time. This pretty
much leaves us with quaternions!

QUATERNIONS

Before continuing with the implementation of the physics engine, and later the
ragdoll system, you need to understand the concept of quaternions. Quaternions
are stored as four values; the first value is a scalar value, and the three following
values describe a vector. Since a quaternion is a four-dimensional entity, it’s close
to impossible to create a mental image of it. Instead, the best approach for any
non-mathematician is just to learn how to create an arbitrary orientation using
quaternions, and then get more comfortable with them by using them in your
code. The word quaternion comes from Latin’s “Quaternio,” which means “set of
four.” A quaternion is defined as the following four values:

q = [w, x, y, z]

Quaternions were invented by an Irish mathematician named Sir William
Hamilton some 200 years ago. His motivation was to come up with a method to
describe the transformation required to transform a vector V1 into a vector V2. In
the case of two points A and B, there exists a vector V that transforms point A into
point B, as shown in Figure 6.4.

114 Character Animation with Direct3D

A quaternion performs the same operation but on two vectors. A quaternion
can transform one specific vector into another specific vector. Usually a vector is
described as its x, y, and z components, but a vector can also be described with a
direction and a length. Here’s the general theory of how you can transform one
vector into another when they are described as a direction and a length:

Figure 6.5 shows the two vectors V1 and V2. The first step of changing V1 into V2
is to make sure their length (or magnitude) is the same. For this you simply ignore
their orientation and calculate the scale factor S you need to apply to V1 so that its
length matches that of V2.

S =
�V 2�
�V 1�

The scale factor S, is calculated by simply dividing the length of vector V2 with
the length of vector V1. Next you need a way of transforming a direction into
another, and for this you need to use versors. A versor describes the difference in
orientation of two vectors of equal length, as shown in Figure 6.6.

Chapter 6 Physics Primer 115

FIGURE 6.4
Transforming one point into another.

FIGURE 6.5
Vectors V1 and V2 differ both in
magnitude and orientation.

All you need to reorient V1 into V2 is the angle between the vectors and the axis
around which to rotate. The angle � is obtained by calculating the inverse cosine
value of the vectors’ dot product:

a = a cos(V1•V2)

The axis around which the rotation should take place is simply the cross product
of the vectors:

A = V1�V2

The quaternion that combines the scaling and rotating of V1 into V2 can then
be created using one value for scale, one for the angle, and two values for the plane
on which V1 and V2 lie. When I talk about orientations and rotations using
quaternions throughout this book, only a small subset of all possible quaternions
are of particular interest. This subset is all the unit quaternions (i.e., quaternions
with a length of 1). All possible unit quaternions form a hyper-sphere, which
basically is a four-dimensional sphere (something quite hard to visualize).

Here’s a practical problem—one which you will no doubt run into once you
switch to quaternions. Have a look at the problem shown in Figure 6.7.

116 Character Animation with Direct3D

FIGURE 6.6
Transforming the direction of a
vector to another.

In Figure 6.7, a rotation of �-radians around Axis A is described. This rotation
will transform the vector p1 into p2. Remember that the axis around which you
want to rotate can be any arbitrary axis. Here’s how you can create a quaternion to
define this rotation. Remember that quaternions were defined as:

q = [w, x, y, z]

In the example of rotating �-radians around Axis A (x, y, z), the quaternion for
this would be:

cox(a/2),

q =
x•sin(a/2),
y•sin(a/2),
z*sin(a/2)

In DirectX, a quaternion is stored using the D3DXQUATERNION structure:

struct D3DXQUATERNION {

FLOAT x;

FLOAT y;

FLOAT z;

FLOAT w;

};

Chapter 6 Physics Primer 117

FIGURE 6.7
Transforming the unit vector p1 into p2 using quaternions.

118 Character Animation with Direct3D

...

//Previous example in code

D3DXVECTOR3 A(0.2f, 0.6f, -0.3f); //Any arbitrary axis

D3DXVec3Normalize(&A, &A); //Normalized

float angle = 0.342f; //Arbitrary angle

//Quaternion is then defined as

D3DXQUATERNION q;

q.w = cos(angle * 0.5f);

q.x = sin(angle * 0.5f) * A.x;

q.y = sin(angle * 0.5f) * A.y;

q.z = sin(angle * 0.5f) * A.z;

Luckily the D3DX library is full of quaternion helper functions. Table 6.2 lists
the names of the most useful quaternion functions. These will be used throughout
the following chapters, but if you want to familiarize yourself with them now, check
out the DirectX Documentation.

TABLE 6.2 D3DX QUATERNION FUNCTIONS

D3DXQuaternionRotationAxis(): This function creates a quaternion that rotates
around an arbitrary axis.

D3DXQuaternionRotationMatrix(): This function creates a quaternion from a (rotation)
matrix.

D3DXQuaternionNormalize(): This function normalizes a quaternion making it a
unit quaternion of length 1.

D3DXQuaternionInverse(): This function creates the inverse quaternion.

D3DXMatrixRotationQuaternion(): This function creates a rotation matrix from a
quaternion.

For a more in-depth explanation of quaternions and quaternion math, check
out [Ibanez01] or [Svarovsky00].

Chapter 6 Physics Primer 119

Mi =

Matrices have the identity matrix, which when applied to an object leaves the
translation, rotation, and scale unaffected:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

In the same way, quaternions have the identity quaternion, which does not af-
fect the rotation when applied to an object:

DESCRIBING THE WORLD

If you have ever implemented things like viewport culling or picking, you may have
encountered the Axis-Aligned Bounding Box (AABB). This bounding volume has
two vectors, one containing the minimum corner (x, y, z) and once containing the
maximum corner (x, y, z) of the box. Although it is fast to perform different inter-
section tests, etc. with this volume, it is quite inaccurate in many cases.

To describe the world your objects will interact with in the physics simulation,
Oriented Bounding Boxes (OBB) will be used instead. By combining several
of these Oriented Bounding Boxes, complex-enough worlds can be built for the
purpose of this book. Figure 6.8 shows an image comparing the AABB and the
OBB in two dimensions:

As shown in Figure 6.8, the OBB has one great advantage over the AABB: It fits
much closer to the object (especially when the object is rotated, as is the case in
Figure 6.8). With the OBB you can build up a much more accurate representation
of the game world.

As explained earlier, an AABB is often described as a MAX and a MIN vector.
These hold the maximum and minimum coordinates of the box in the x, y, and z
dimensions. With an OBB, however, you need one vector with the size of the box,
one vector for its position, and one vector for its orientation. However, in most
physics applications, vectors (Euler angles) are avoided for orientation because of
the Gimbal lock. So instead I’ll use a quaternion for the orientation as covered in
the previous section.

THE ORIENTED BOUNDING BOX CLASS

The Oriented Bounding Box (OBB) is a structure that describes a volume with
width, height, length, and orientation. For it to be useful in physic simulations, you
need to be able to perform a number of different intersection tests. Often you also
need to know how far an intersecting object is into the OBB so the physics engine
can handle the collision accordingly. The OBB class is defined as follows:

class OBB

{

public:

OBB();

OBB(D3DXVECTOR3 size);

bool Intersect(D3DXVECTOR3 &point);

bool Intersect(OBB &b);

public:

D3DXVECTOR3 m_size, m_pos;

D3DXQUATERNION m_rot;

};

120 Character Animation with Direct3D

FIGURE 6.8
Axis-Aligned Bounding Box (AABB) versus Oriented Bounding Box (OBB).

At the moment I’ve only defined two intersection tests: one Point-OBB and one
OBB-OBB test. The OBB-OBB intersection test is a bit beyond the scope of this
book. You’ll find a good article on intersection tests online [Gomez99]. You can also
find the code for the OBB-OBB test in Example 6.1 on the accompanying CD-ROM.
However, you need to have a closer look at the more important Point-OBB test. First
consider the point intersection test of an Axis-Aligned Bounding Box (AABB):

class AABB

{

public:

AABB(D3DXVECTOR3 max, D3DXVECTOR3 min)

{

m_max = max;

m_min = min;

}

bool Intersect(D3DXVECTOR3 &p)

{

if(p.x < m_min.x || p.x > m_max.x)return false;

if(p.y < m_min.y || p.y > m_max.y)return false;

if(p.z < m_min.z || p.z > m_max.z)return false;

return true;

}

public:

D3DXVECTOR3 m_max, m_min;

};

The Point-AABB intersection test is very simple; you simply check for each
dimension if the point is smaller than the minimum or larger than the maximum
value of the bounding box. If so, the point must be outside the box. If after check-
ing all the dimensions (x, y, z) none of these tests failed, then the point must be
inside the box. To do this same test for an OBB is not quite as simple because it
also has an orientation. Figure 6.9 shows this problem.

Chapter 6 Physics Primer 121

Look at Figure 6.9 and perform the intersection test listed earlier for the AABB.
Now if you try to do the same for the OBB, you would soon realize that it is not
quite as easy to tell whether the points are inside or outside the box using this
method. However, with one simple trick it becomes just as easy to do for the OBB
as for the AABB. You simply need to look at it from a different point of view. Tilt
your head until the OBB becomes an AABB and then check the points using the
same algorithm used for the Point-AABB intersection test. With this in mind,
here’s the code for the Point-OBB intersection test:

bool OBB::Intersect(D3DXVECTOR3 &point)

{

//Calculate the translation & rotation matrices

D3DXMATRIX p, r, world;

D3DXMatrixTranslation(&p, m_pos.x, m_pos.y, m_pos.z);

D3DXMatrixRotationQuaternion(&r, &m_rot);

//Calculate the world matrix for the OBB

D3DXMatrixMultiply(&world, &r, &p);

//Calculate the inverse world matrix

D3DXMatrixInverse(&world, NULL, &world);

//Transform the point with the inverse world matrix

D3DXVECTOR4 pnt;

D3DXVec3Transform(&pnt, &point, &world);

122 Character Animation with Direct3D

FIGURE 6.9
Point intersection, AABB versus OBB.

//Check the point just as if it was an AABB

if(abs(pnt.x) > m_size.x)return false;

if(abs(pnt.y) > m_size.y)return false;

if(abs(pnt.z) > m_size.z)return false;

return true;

}

With the OBB structure you can describe some fairly complex (although an-
gular) environments for us to run physics simulations in. In Figure 6.10 you can see
an example of this: on the left side, the mesh used in the rendering pipeline, and on
the right, the physical representation of the same mesh using OBBs.

The mesh being rendered can have thousands of polygons and would therefore
be very expensive to do collision detection with. The OBB representation, on the
other hand, is very fast, without losing too much detail.

Chapter 6 Physics Primer 123

FIGURE 6.10
Example of an environment described using Oriented Bounding Boxes.

PHYSICS SIMULATION

Remember that the long-term goal is to create a ragdoll animation and have a
character fall/collide with objects in a realistic way. There’s still a long way to go
before realizing this, although a lot of things have now been covered. You know
how to represent the environment (or at least how to create a simplified version of
it). Now it is time to start looking at the interaction bit.

I guess a quick recap is in order. So far you have learned the theory of rigid bod-
ies, how forces affect an object, the basics of quaternions, and how to describe the
environment using Oriented Bounding Boxes. You will now finally get to put these
lessons into practice. Now it is time to look at how to implement a few physical prop-
erties of a rigid body and how to update (i.e., simulate) these in a realistic manner. In
this book I’ll use the following interface to describe objects in the physics simulation.

124 Character Animation with Direct3D

EXAMPLE 6.1

This chapter has now gone on long enough without a proper code example.
This example implements the OBB class and also shows you an OBB-OBB

intersection test. Try to construct a representation of a cabin like the one in Figure 6.10
using this OBB class.

class PHYSICS_OBJECT

{

public:

virtual void Update(float deltaTime) = 0;

virtual void Render() = 0;

virtual void AddForces() = 0;

virtual void SatisfyConstraints(vector<OBB*> &obstacles) = 0;

};

The Update() function updates the position of the object, the Render() function
renders it, and the AddForces() function adds forces to the objects such as gravity,
wind, etc. The SatisfyConstraints() function takes a list of Oriented Bounding
Boxes as a parameter. The OBBs are the physical representation of the world. The
SatisfyContraints() function handles the object’s collision with the world. Next,
there’s the PHYSICS_ENGINE class, which takes care of a collection of PHYSICS_OBJECT
objects and runs a simulation with these in the physical representation of the world.

class PHYSICS_ENGINE

{

public:

PHYSICS_ENGINE();

void Init();

void Update(float deltaTime);

void AddForces();

void SatisfyConstraints();

void Render();

void Reset();

private:

vector<PHYSICS_OBJECT*> m_physicsObjects;

vector<OBB*> m_obstacles;

float m_time;

};

As you can see, this class contains a vector of physics objects and a list of OBBs.
Each time step, every object in the physics simulation is updated in the following
manner:

1. Add forces (gravity, wind).
2. Update position.
3. Satisfy constraints (check for collisions, and move object to a legal position).

Chapter 6 Physics Primer 125

That’s pretty much all you need for a lightweight physics simulation. Note
that there are light-years between a physics engine like this and a proper engine.
For example, this “engine” doesn’t handle things like object–object collision, etc.
Next, you’ll learn how the position of an object is updated, and after that the first
physics object (the particle) will be implemented.

POSITION, VELOCITY, AND ACCELERATION

Next I’ll cover the three most basic physical properties of a rigid body: its position p,
its velocity v, and its acceleration a. In 3D space, the position of an object is described
with x, y, and z coordinates. The velocity of an object is simply how the position
is changing over time. In just the same way, the acceleration of an object is how the
velocity changes over time. The formulas for these behaviors are listed below.

pn = p + v • t

where pn is the new position.

vn = v + a • t

where vn is the new velocity.

a =
f
m

In the case of a 3D object, these are all described as a 3D vector with an x, y, and
z component. The following code shows an example class that has the m_position,
m_velocity, and the m_acceleration vector. This class implements the formulas
above using a constant acceleration:

class OBJECT{

public:

OBJECT()

{

m_position = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

m_velocity = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

m_acceleration = D3DXVECTOR3(0.0f, 1.0f, 0.0f);

}

void Update(float deltaTime)

{

126 Character Animation with Direct3D

�

�

m_velocity += m_acceleration * deltaTime;

m_position += m_velocity * deltaTime;

}

private:

D3DXVECTOR3 m_position;

D3DXVECTOR3 m_velocity;

D3DXVECTOR3 m_acceleration;

};

As you can see, the m_position and the m_velocity vectors are initialized to
zero, while the m_acceleration vector is pointing in the Y-direction with a constant
magnitude of one. Figure 6.11 shows a graph of how the acceleration, velocity, and
position of an object like this change over time.

In this section you have looked at how an object’s position is affected by
velocity, which in turn is affected by its acceleration. In the same manner, an
object’s orientation is affected by its angular velocity, which in turn is affected by
its torque. However, since you won’t need the concepts of angular velocity and
torque to create a simple ragdoll animation, I won’t dive into the detailed math
of these. If you want to look into the specifics of angular velocity and torque, I
suggest reading the article “Integrating the Equations of Rigid Body Motion” by
Miguel Gomez [Gomez00].

THE PARTICLE

These days, physicists use billions of volts to try and accelerate tiny electrically
charged particles and collide them with each other. What you’re about to engage in
is, thankfully, much simpler than that (and also a lot less expensive). You’ll be
looking at the smallest (and simplest) entity you can simulate in a physics engine:
the particle!

Chapter 6 Physics Primer 127

FIGURE 6.11
Acceleration, velocity, and position over time.

A particle can have a mass, but it does not have a volume and therefore it
doesn’t have an orientation either. This makes it a perfect physical entity for us
beginners to start with. The particle system I am about to cover here is based on
the article “Advanced Character Physics” by Thomas Jakobsen [Jakobsen03].

Instead of storing the velocity of a particle as a vector, you can also store it
using an object’s current position and its previous position. This is called Verlet
integration and works like this:

pn = 2pc - po + a t
po = pc

pn is the new position, pc is the current position, and po is the previous position of
an object. After you calculate the new position of an object, you assign the previous
position to the current. As you can see, there’s no velocity in this formula since this is
always implied using the difference between the current and the old position. In code,
this can be implemented like this:

D3DXVECTOR3 temp = m_pos;

m_pos += (m_pos - m_oldPos) + m_acceleration * deltaTime * deltaTime;

m_oldPos = temp;

In this code snippet, m_pos is the current position of the particle, m_oldPos is the
old position, and m_acceleration is the acceleration of the particle. This Verlet inte-
gration also requires that the deltaTime is fixed (i.e., not changing between updates).
Although this method of updating an object may seem more complicated than the
one covered previously, it does have some clear advantages. Most important of these
advantages is that it makes it easier to build a stable physics simulation. This is due to
the fact that if a particle suddenly were to collide with a wall and stop, its velocity
would also become updated (i.e., set to zero), and the particle’s velocity would no
longer point in the direction of the wall.

The following code shows the PARTICLE class. As you can see, it extends the
PHYSICS_OBJECT base class and can therefore be simulated by the PHYSICS_ENGINE class.

class PARTICLE : public PHYSICS_OBJECT

{

public:

PARTICLE();

PARTICLE(D3DXVECTOR3 pos);

void Update(float deltaTime);

void Render();

128 Character Animation with Direct3D

�

void AddForces();

void SatisfyConstraints(vector<OBB*> &obstacles);

private:

D3DXVECTOR3 m_pos;

D3DXVECTOR3 m_oldPos;

D3DXVECTOR3 m_forces;

float m_bounce;

};

The m_bounce member is simply a float between [0, 1] that defines how much
of the energy is lost when the particle bounces against a surface. This value is also
known as the “coefficient of restitution,” or in other words, “bounciness.” With a
high bounciness value, the particle will act like a rubber ball, whereas with a low
value it will bounce as well as a rock. The next thing you need to figure out is how
a particle behaves when it collides with a plane (remember the world is described
with OBBs, which in turn can be described with six planes).

“To describe collision response, we need to partition velocity and force vectors into
two orthogonal components, one normal to the collision surface, and the other
parallel to it.”

[Witkin01]

This same thing is shown more graphically in Figure 6.12.

Chapter 6 Physics Primer 129

FIGURE 6.12
Particle and forces before collision (left).
Particle and forces after collision (right).

VN = (N•V)N

VN is the current velocity projected onto the normal N of the plane.

VT = V – VN

VT is the velocity parallel to the plane.

V' = VT – VN

Finally, V' is the resulting velocity after the collision.
The following code snippet shows you one way to implement this particle-plane

collision response using Verlet integration. In this code I assume that a collision has
occurred and that I know the normal of the plane with which the particle has collided.

//Calculate Velocity

D3DXVECTOR3 V = m_pos - m_oldPos;

//Normal Velocity

D3DXVECTOR3 VN = D3DXVec3Dot(&planeNormal, &V) * planeNormal;

//Tangent Velocity

D3DXVECTOR3 VT = V - VN;

//Change the old position (i.e. update the particle velocity)

m_oldPos = m_pos - (VT - VN * m_bounce);

First, the velocity of the particle was calculated by subtracting the position of
the particle with its previous position. Next, the normal and tangent velocities were
calculated using the formulas above. Since Verlet integration is used, you need to
change the old position of the particle to make the particle go in a different direc-
tion the next update. You can also see that I have added the m_bounce variable to the
calculation, and in this way you can simulate particles with different “bounciness.”

130 Character Animation with Direct3D

THE SPRING

Next I’ll show you how to simulate a spring in a physics simulation. In real life you
find coiled springs in many different places such as car suspensions, wrist watches,
pogo-sticks, etc. A spring has a resting length—i.e., the length when it doesn’t try
to expand or contract. When you stretch a spring away from this equilibrium
length it will “pull back” with a force equivalent to the difference from its resting
length. This is also known as Hooke’s Law.

F = –kx

Chapter 6 Physics Primer 131

EXAMPLE 6.2

This example covers the PARTICLE class as well as the particle-OBB inter-
section test and response. Play around with the different physics parameters

to make the particles behave differently. Also try changing the environment and build
something more advanced out of the Oriented Bounding Boxes.

F is the resulting force, k is the spring constant (how strong/stiff the spring is),
and x is the spring’s current distance away from its resting length. Note that if the
spring is already in its resting state, the distance will be zero and so will the resulting
force. If an object is hanging from one end of a spring that has the other end attached
to the roof, it will have an oscillating behavior whenever the object is moved away
from the resting length, as shown in Figure 6.13.

As you can see in Figure 6.13, the spring makes a nice sinus shaped motion
over time. Eventually, however, friction will bring this oscillation to a stop (this is,
incidentally, what forces us to manually wind up old mechanical clocks). In this
book a specific subset of springs are of particular interest: springs with an infinite
strength. If you connect two particles with a spring like this, the spring will auto-
matically pull or push these particles together or apart until they are exactly at the
spring’s resting length from each other. Using springs with infinite strength can be
used to model rigid volumes like tetrahedrons, boxes, and more. The following code
snippet shows the implementation of the SPRING class. As you can see, you don’t
need anything other than pointers to two particles and a resting length for the
spring. The SPRING class also extends the PHYSICS_OBJECT class and can therefore also
be simulated by the PHYSICS_ENGINE class.

132 Character Animation with Direct3D

FIGURE 6.13
The oscillating behavior of a spring.

class SPRING : public PHYSICS_OBJECT

{

public:

SPRING(PARTICLE *p1, PARTICLE *p2, float restLength);

void Update(float deltaTime){}

void Render();

void AddForces(){}

void SatisfyConstraints(vector<OBB*> &obstacles);

private:

PARTICLE *m_pParticle1;

PARTICLE *m_pParticle2;

float m_restLength;

};

void SPRING::SatisfyConstraints(vector<OBB*> &obstacles)

{

D3DXVECTOR3 delta = m_pParticle1->m_pos - m_pParticle2->m_pos;

float dist = D3DXVec3Length(&delta);

float diff = (dist-m_restLength)/dist;

m_pParticle1->m_pos -= delta * 0.5f * diff;

m_pParticle2->m_pos += delta * 0.5f * diff;

}

This code shows the SPRING class and its most important function, the Satisfy-
Constraints() function. In it, the two particles are forcibly moved to a distance
equal to the resting length of the spring.

Chapter 6 Physics Primer 133

CONCLUSIONS

As promised, this chapter contained only the “bare bones” of the knowledge
needed to create a physics simulation. It is important to note that all the code in
this chapter has been written with clarity in mind, not optimization. The simplest
and most straightforward way to optimize a physics engine like this is to remove
all square root calculations. Write your own implementation of D3DXVec3Length(),
D3DXVec3Normalize(), etc. using an approximate square root calculation. For more
advanced physics simulations, you’ll also need some form of space partitioning
speeding up nearest neighbor queries, etc.

In this chapter the game world was described using Oriented Bounding Boxes.
A basic particle system was simulated as well as particles connected with springs.
Although it may seem like a lot more knowledge is needed to create a ragdoll

134 Character Animation with Direct3D

EXAMPLE 6.3

This example is a small variation of the previous example. This time, how-
ever, the particles are connected with springs forcing the particles to stay at

a specific distance from each other.

system, most of it has already been covered. All you need to do is start creating a
skeleton built of particles connected with springs. In Chapter 7, a ragdoll will be
created from an existing character using an open source physics engine.

CHAPTER 6 EXERCISES

Implement particles with different mass and bounciness values and see how
that affects the particles and springs in Example 6.3.
Implement springs that don’t have infinite spring strength (use Hooke’s Law).
Try to connect particles with springs to form more complex shapes and objects,
such as boxes, etc.

FURTHER READING

[Eberly99] Eberly, David, “Dynamic Collision Detection Using Oriented Bounding
Boxes.” Available online at http://www.geometrictools.com/Documentation/
DynamicCollisionDetection.pdf, 1999.

[Gomez99] Gomez, Miguel, “Simple Intersection Tests for Games.” Available online
at http://www.gamasutra.com/features/19991018/Gomez_1.htm, 1999.

[Gomez00] Gomez, Miguel, “Integrating the Equations of Rigid Body Motion.”
Game Programming Gems, Charles River Media, 2000.

[Ibanez01] Ibanez, Luis, “Tutorial on Quaternions.” Available online at http://www.
itk.org/CourseWare/Training/QuaternionsI.pdf, 2001.

[Jakobsen03] Jakobsen, Thomas, “Advanced Character Physics.” Available online
at http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml, 2003.

[Svarovsky00] Svarovsky, Jan, “Quaternions for Game Programming.” Game
Programming Gems, Charles River Media, 2000.

[Wikipedia] “Gravitational Constant.” Available online at http://en.wikipedia.org/
wiki/Gravitational_constant.

[Witkin01] Witkin, Andrew, “Physically Based Modeling, Particle System Dynamics.”
Available online at http://www.pixar.com/companyinfo/research/pbm2001/
pdf/notesc.pdf, 2001.

Chapter 6 Physics Primer 135

http://www.geometrictools.com/Documentation/DynamicCollisionDetection.pdf
http://www.geometrictools.com/Documentation/DynamicCollisionDetection.pdf
http://www.gamasutra.com/features/19991018/Gomez_1.htm
http://www.itk.org/CourseWare/Training/QuaternionsI.pdf
http://www.itk.org/CourseWare/Training/QuaternionsI.pdf
http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml
http://www.pixar.com/companyinfo/research/pbm2001/pdf/notesc.pdf
http://www.pixar.com/companyinfo/research/pbm2001/pdf/notesc.pdf
http://en.wikipedia.org/wiki/Gravitational_constant
http://en.wikipedia.org/wiki/Gravitational_constant

This page intentionally left blank

137

Ragdoll Simulation7

Ragdoll animation is a procedural animation, meaning that it is not created by an
artist in a 3D editing program like the animations covered in earlier chapters. Instead,
it is created in runtime. As its name suggests, ragdoll animation is a technique of sim-
ulating a character falling or collapsing in a believable manner. It is a very popular
technique in first person shooter (FPS) games, where, for example, after an enemy
character has been killed, he tumbles down a flight of stairs. In the previous chapter
you learned the basics of how a physics engine works. However, the “engine” created
in the last chapter was far from a commercial engine, completely lacking support for
rigid bodies (other than particles). Rigid body physics is something you will need
when you implement ragdoll animation. So, in this chapter I will race forward a bit

and make use of an existing physics engine. If you ever work on a commercial game
project, you’ll find that they use commercial (and pretty costly) physics engines such
as Havok™, PhysX™, or similar. Luckily, there are several good open-source physics
engines that are free to download and use. In this chapter I’ll use the Bullet physics
engine, but there are several other open-source libraries that may suit you better (for
example, ODE, Box2D, or Tokamak). This chapter covers the following:

Introduction to the Bullet physics engine
Creating the physical ragdoll representation
Creating constraints
Applying a mesh to the ragdoll

Before you continue with the rest of this chapter, I recommend that you go to the
following site:

http://www.fun-motion.com/physics-games/sumotori-dreams/

Download the amazing 87 kb Sumotori Dreams game and give it a go (free down-
load). It is a game where you control a Sumo-wrestling ragdoll. This game demo
is not only an excellent example of ragdoll physics, but it is also quite fun! Figure
7.1 shows a screenshot of Sumotori Dreams:

138 Character Animation with Direct3D

FIGURE 7.1
A screenshot of Sumotori Dreams.

http://www.fun-motion.com/physics-games/sumotori-dreams/

INTRODUCTION TO THE BULLET PHYSICS ENGINE

A complete physics engine is a huge piece of software that would take a single person
a tremendous amount of time to create on his own. Luckily, you can take advantage
of the hard work of others and integrate a physics engine into your game with mini-
mum effort. This section serves as a step-by-step guide to installing and integrating
the Bullet physics engine into a Direct3D application. The Bullet Physics Library was
originally created by Erwin Coumans, who previously worked for the Havok project.
Since 2005, the Bullet project has been open source, with many other contributors as
well. To get Bullet up and running, you only need to know how to create and use the
objects shown in Table 7.1.

As you can see, there are some classes with duplicated functionality when using
Bullet together with DirectX. I have created a set of helper functions to easily
convert some Bullet structures to the corresponding DirectX structures. These
helper functions are listed below:

Chapter 7 Ragdoll Simulation 139

TABLE 7.1 BULLET CORE CLASSES

Separate multiple permissions with a comma and no spaces. Here is an example:

stsadm -o managepermissionpolicylevel -url http://barcelona -name "Book

Example" -add -description “Example from book" -grantpermissions

UpdatePersonalWebParts,ManageLists

You can verify the creation of the policy in Central Administration. Once the
policy is created, you can use changepermissionpolicy to alter the permissions or
use deletepermissionpolicy to remove it completely. You can also use addpermis-
sionpolicy to assign your policy or any of the included ones to a user or group.

THINGS YOU CAN ONLY DO IN STSADM

The final part of this chapter will cover functionality that is not in the Web UI. This
functionality is only available with STSADM.

btDiscreteDynamicsWorld The physics simulations world object. You add rigid bodies
and constraints to this class. This class also updates and
runs the simulation using the stepSimulation() function.

btRigidBody This is the class used to represent a single rigid body object
in the physics simulation.

btMotionState Each rigid body needs a collision shape. For this purpose,
several classes inherit from the btCollisionShape, such as
btBoxShape, btSphereShape, btStaticPlaneShape, etc.

btTransform You will need to extract the position and orientation from
an object’s transform each frame to do the rendering of
that object. The btTransform corresponds to the
D3DXMATRIX in DirectX.

btVector3 Bullet’s 3D vector, which corresponds to DirectX’s
D3DXVECTOR3.

btQuaternion Bullet’s Quaternion class, which corresponds to DirectX’s
D3DXQUATERNION.

//Bullet Vector to DirectX Vector

D3DXVECTOR3 BT2DX_VECTOR3(const btVector3 &v)

{

return D3DXVECTOR3(v.x(), v.y(), v.z());

}

//Bullet Quaternion to DirectX Quaternion

D3DXQUATERNION BT2DX_QUATERNION(const btQuaternion &q)

{

return D3DXQUATERNION(q.x(), q.y(), q.z(), q.w());

}

//Bullet Transform to DirectX Matrix

D3DXMATRIX BT2DX_MATRIX(const btTransform &ms)

{

btQuaternion q = ms.getRotation();

btVector3 p = ms.getOrigin();

D3DXMATRIX pos, rot, world;

D3DXMatrixTranslation(&pos, p.x(), p.y(), p.z());

D3DXMatrixRotationQuaternion(&rot, &BT2DX_QUATERNION(q));

D3DXMatrixMultiply(&world, &rot, &pos);

return world;

}

As you can see in these functions, the information in the Bullet vector and
quaternion classes are accessed through function calls. So you simply create the
corresponding DirectX containers using the data from the Bullet classes. However,
before you can get this code to compile, you need to set up your project and
integrate the Bullet library.

INTEGRATING THE BULLET PHYSICS LIBRARY

This section describes in detail the steps required to integrate the Bullet Physics
Library to your own Direct3D project. You can also find these steps described in
detail in the Bullet user manual (part of the library download).

DOWNLOAD BULLET

The first thing you need to do is to download Bullet from:
http://www.bulletphysics.com

140 Character Animation with Direct3D

http://www.bulletphysics.com

At the time of writing, the latest version of the Bullet Physics Library was 2.68.

After you have downloaded the library (bullet-2.68.zip, in my case), unpack it
somewhere on your hard drive. I will assume that you unpacked it to “C:\Bullet” and
will use this path throughout the book (You can of course put the Bullet library wher-
ever it suits you best). A screenshot of the folder structure can be seen in Figure 7.2.

The example exe files will not be available until you have made your first build of
the Bullet physics engine.

BUILD THE BULLET LIBRARIES

The next thing you need to do is to compile the Bullet libraries. In the root folder of
the Bullet library, find the “C:\Bullet\msvc” folder and open it. In it you’ll find pro-
ject folders for Visual Studio 6, 7, 7.1, and 8. Select the folder corresponding to your
version of Visual Studio and open up the wksbullet.sln solution file located therein.

This will fire up Visual Studio with the Bullet project. You will see a long list of
test applications in the solution explorer. These are a really good place to look for
example source code, should you get stuck with a particular problem.

Chapter 7 Ragdoll Simulation 141

FIGURE 7.2
The Bullet Physics Library.

Next, make a release build of the entire solution and sit back and wait for it to
finish (it takes quite a while). Press the Play button to start a collection of Bullet
examples. Be sure to check these out before moving on (especially the Ragdoll
example, as seen in Figure 7.3).

Not only did you build all these cool physics test applications when compiling the
Bullet solution, you also compiled the libraries (lib files) you will use in your own
custom applications. Assuming you put the Bullet library in “C:\Bullet” and that you
use Visual Studio 8, you will find the compiled libraries in “C:\Bullet\out\
release8\libs”.

SETTING UP A CUSTOM DIRECT3D PROJECT

The next thing you need to do is create a new project and integrate Bullet into it. First
make sure the Bullet include files can be found. You do this by adding the Bullet
source folder to the VC++ directories, as shown in Figure 7.4. You will find this
menu by clicking the Options button in the Tools drop-down menu in Visual Studio.

142 Character Animation with Direct3D

FIGURE 7.3
The Bullet Ragdoll example.

Select the “Include Files” option from the “Show Directories for” drop-down
menu. Create a new entry and direct it to the “C:\Bullet\src” folder. You also
need to repeat this process but for the library folder. Select “Library Files” from the
“Show Directories for”-dropdown menu. Create a new entry in the list and direct
it to “C:\Bullet\out\release8\libs”.

Then link the Bullet libraries to the project. You do this through the project
properties (Alt + F7), or by clicking the Properties button in the Project drop-
down menu. That will open the Properties menu shown in Figure 7.5.

Now find the “Linker – Input” option in the left menu. In the “Additional De-
pendencies” field to the right, add the following library files: libbulletdynamics.lib,
libbulletcollision.lib, and libbulletmath.lib, as shown in Figure 7.5.

Finally you need to include the btBulletDynamicsCommon.h header file in
any of your source files making use of the Bullet library classes. After following
these directions, you should now be ready to create and build your own physics
application.

Chapter 7 Ragdoll Simulation 143

FIGURE 7.4
Adding the Bullet source folder to the VC++ directories.

HELLO BTDYNAMICSWORLD

In this section you will learn how to set up a btDynamicsWorld object and get started
with simulating physical objects. The btDynamicsWorld class is the high-level interface
you’ll use to manage rigid bodies and constraints, and to update the simulation. The
default implementation of the btDynamicsWorld is the btDiscreteDynamicsWorld class.
It is this class I will use throughout the rest of this book, or at least for the parts
concerning physics (see the Bullet documentation for more information about other
implementations). The following code creates a new btDiscreteDynamicsWorld object:

//New default Collision configuration

btDefaultCollisionConfiguration *cc;

cc = new btDefaultCollisionConfiguration();

//New default Constraint solver

btConstraintSolver *sl;

sl = new btSequentialImpulseConstraintSolver();

144 Character Animation with Direct3D

FIGURE 7.5
The Project Properties menu.

//New axis sweep broadphase

btVector3 worldAabbMin(-1000,-1000,-1000);

btVector3 worldAabbMax(1000,1000,1000);

const int maxProxies = 32766;

btBroadphaseInterface *bp;

bp = new btAxisSweep3(worldAabbMin, worldAabbMax, maxProxies);

//New dispatcher

btCollisionDispatcher *dp;

dp = new btCollisionDispatcher(cc);

//Finally create the dynamics world

btDynamicsWorld* dw;

dw = new btDiscreteDynamicsWorld(dp, bp, sl, cc);

As you can see, you need to specify several other classes in order to create a
btDiscreteDynamicsWorld object. You need to create a Collision Configuration,
a Constraint Solver, a Broadphase Interface, and a Collision Dispatcher. All these
interfaces have different implementations and can also be custom implemented.
Check the Bullet SDK for more information on all these classes and their variations.

Next I’ll show you how to add a rigid body to the world and finally how you
run the simulation. To create a rigid body, you need to specify four things: mass,
motion state (starting world transform), collision shape (box, cylinder, capsule,
mesh, etc.) and local inertia. The following code creates a rigid body (a box) and
adds it to the dynamics world:

//Create Starting Motion State

btQuaternion q(0.0f, 0.0f, 0.0f);

btVector3 p(51.0f, 30.0f, -10.0f);

btTransform startTrans(q, p);

btMotionState *ms = new btDefaultMotionState(startTrans);

//Create Collision Shape

btVector3 size(1.5f, 2.5f, 0.75f);

btCollisionShape *cs = new btBoxShape(size);

//Calculate Local Inertia

float mass = 35.0f;

btVector3 localInertia;

cs->calculateLocalInertia(mass, localInertia);

Chapter 7 Ragdoll Simulation 145

146 Character Animation with Direct3D

//Create Rigid Body

btRigidBody *body = new btRigidBody(mass, ms, cs, localInertia);

//Add the new body to the dynamics world

pDynamicsWorld->addRigidBody(body);

Then to run the simulation all you need to do is call the stepSimulation()
function each frame, like this:

pDynamicsWorld->stepSimulation(deltaTime);

That’s it! The rigid body you have now created will be simulated each frame,
colliding with other rigid bodies, etc. However, you still won’t see anything on the
screen because the box is nothing but a logical representation. You need to hook up
the current motion state of the rigid body to a mesh. In the next example I create
a rigid body for the Oriented Bounding Box (OBB) class that was covered in the
previous chapter. So, each frame the rigid body is updated using the Bullet physics
library and then rendered using DirectX like this:

void OBB::Render()

{

//Get Motion state from rigid body

btMotionState *ms = m_pBody->getMotionState();

if(ms == NULL)return;

//Convert the motion state to a DX matrix

//and use it to set the world transform

pEffect->SetMatrix("matW", &BT2DX_MATRIX(*ms));

//Render the mesh as usual using whichever lighting technique

D3DXHANDLE hTech = pEffect->GetTechniqueByName("Lighting");

pEffect->SetTechnique(hTech);

pEffect->Begin(NULL, NULL);

pEffect->BeginPass(0);

m_pMesh->DrawSubset(0);

pEffect->EndPass();

pEffect->End();

}

You’ll find the source code for the first example using the Bullet physics engine
in Example 7.1.

CONSTRAINTS

After that little detour of getting to know the Bullet physics library, it is time to
get back to what I was trying to achieve in this chapter: ragdoll animation! You
need to choose some of the major bones of the character and create a physical
representation for them that can be simulated in the physics engine. Then as the
ragdoll is simulated, the position and orientation are updated for the bones using
the transforms taken from the rigid bodies, before rendering the mesh. Sounds
easy? Well, not quite. It takes a lot of effort to make ragdoll animation look good
and free from artifacts. You should also note that not all bones in the character
are simulated (such as finger bones and other small bones). Figure 7.6 shows a
picture of a character and its ragdoll setup.

Chapter 7 Ragdoll Simulation 147

EXAMPLE 7.1

This example integrates the Bullet physics engine into a Direct3D applica-
tion. In this example, 100 boxes of different sizes are dropped from the “sky”

and collide with the ground plane and with each other. Try to expand this example to
include shapes other than just boxes—for example, cylinders and spheres (there are
corresponding functions in DirectX to create sphere and cylinder meshes).

You don’t necessarily have to use boxes as in Figure 7.6. You can also use cylin-
ders, capsules, or any other shape you see fit. Later on I will cover in more detail how
to position the shapes to match the skeleton. However, should you run the simulation
after just placing boxes, they would all fall to the floor, disjointed from each other.
You need some form of “connection” between the under arm and the upper arm, for
example. This is where constraints come into the picture. A constraint is just what it
sounds like; it is a rule telling two rigid bodies how they can move in relation to each
other. The two simplest forms of constraints are shown in Figure 7.7.

148 Character Animation with Direct3D

FIGURE 7.6
An example ragdoll setup.

FIGURE 7.7
The ball and hinge joints.

Bullet supports the following constraints:

Point-to-point constraint (a.k.a. ball joint)
Hinge constraint
Twist cone constraint
6 degrees of freedom (DoF) constraint

The ball joint doesn’t have any restrictions on angle or twist amount, whereas the
hinge joint allows no twisting of the connected rigid bodies. The twist cone is a mix
between the ball and hinge joints. With the twist cone constraint, you can specify the
angle range and twist amount allowed (which is very useful when creating a ragdoll).
With the 6DoF constraint, you can specify exactly the angle ranges of each DoF. This
is a bit more functionality than you need to implement a simple ragdoll animation,
but check out the Bullet SDK for more information on these constraints.

Here’s how you would create a simple constraint with the Bullet physics engine.
Let’s assume you have two rigid bodies (A and B) created as shown in the previous
example. You would create a hinge constraint between them like this:

//Set transforms and axis for the hinge (for each rigid body)

btTransform localA, localB;

localA.setIdentity();

localB.setIdentity();

localA.getBasis().setEulerZYX(0,0,0);

localA.setOrigin(btVector3(0.0f, -0.5f, 0.0f));

localB.getBasis().setEulerZYX(0,0,0);

localB.setOrigin(btVector3(0.0f, 0.5f, 0.0f));

//Create Hinge Constraint

btHingeConstraint *hingeC;

hingeC = new btHingeConstraint(A, B, localA, localB);

hingeC->setLimit(-0.5f, 0.5f);

//Add the constraint to the dynamics world

pDynamicsWorld->addConstraint(hingeC, true);

That’s how simple it is to add a constraint between two rigid bodies. The con-
straint limit specifies how much the hinge can bend back and forth. Example 7.2
shows you how this is done with the twist cone and ball joint constraints.

Chapter 7 Ragdoll Simulation 149

CONSTRUCTING THE RAGDOLL

Now that you know how to connect physical rigid bodies using constraints, the
next step of creating a ragdoll is not far off…in theory. All you have to do is to
create a series of boxes (or other shapes) connected via different constraints.
However, in practice it is slightly more difficult than that. First you need to make
sure that the boxes match the skeleton (and the character mesh) as close to
perfect as possible. Otherwise you would get weird results updating the bone
hierarchy of the character using an ill-fitting physical representation. So the
problem you are about to face is the one shown in Figure 7.8.

150 Character Animation with Direct3D

EXAMPLE 7.2

This example implements some of the most common constraints available
to you in the Bullet library. A large number of boxes are created, connected

into a long “string.” Run the simulation many times and observe the difference
between the hinge, the point, and the twist-cone constraints. Also, play around with
the limits of the constraints and see the effect it gives. Be sure to study how the con-
straints are created, since you’ll need a good understanding of this in the next section
where a ragdoll is created.

In Figure 7.8 you see a part of a character—namely, an arm. For a working
ragdoll animation you must create a physical representation of the character that
you can simulate in your physics engine. At each frame you update the skeleton of
the character to match the physical representation and, voila!, You’ve got yourself a
ragdoll. For the purpose of creating, updating, simulating, and rendering a ragdoll,
I’ve created the following class with the somewhat unimaginative name RagDoll:

class RagDoll : public SkinnedMesh

{

public:

RagDoll(char fileName[], D3DXMATRIX &world);

~RagDoll();

void InitBones(Bone *bone);

void Release();

void Update(float deltaTime);

Chapter 7 Ragdoll Simulation 151

FIGURE 7.8
Solid character arm mesh (top). Arm wireframe and bones
(middle). Arm wireframe and physical representation (bottom).

void Render();

void UpdateSkeleton(Bone* bone);

OBB* CreateBoneBox(Bone* parent, Bone *bone,

D3DXVECTOR3 size, D3DXQUATERNION rot);

void CreateHinge(Bone* parent, OBB* A, OBB* B,

float upperLimit, float lowerLimit,

D3DXVECTOR3 hingeAxisA, D3DXVECTOR3 hingeAxisB,

bool ignoreCollisions=true);

void CreateTwistCone(BONE* parent, OBB* A, OBB* B,

float limit, D3DXVECTOR3 hingeAxisA,

D3DXVECTOR3 hingeAxisB,

bool ignoreCollisions=true);

private:

vector<OBB*> m_boxes; //Boxes for physics simulation

};

I’ll cover the more technical functions and creation of this class throughout the
coming sections. But first there are some challenges you’ll face when approaching
this problem. For example, how do you place the Oriented Bounding Boxes so that
they fit the mesh as closely as possible? You could, of course, attempt an algorithmic
approach. This might be best if you need to create physical representations for a
large number of characters, or if your characters are generated or randomized in
some way. In that case you should probably traverse through the bones and deter-
mine which ones are big enough to merit a physical representation (remember,
small bones like fingers are ignored). Next you would have to find the vertices linked
to this bone and, for example, use Principal Component Analysis (PCA) to fit an
Oriented Bounding Box to the bone and its vertices [VanVerth04]. This is outside
the scope of this book, however, so I’ll stick with the old-fashioned way of doing
things: “by hand.”

Even the “by hand” approach will need some supporting calculations to place
the Oriented Bounding Box as optimally as possible. See Figure 7.9.

With the “by hand” fitting scheme I will only supply the size of the Oriented
Bounding Box and use the orientation of the bone itself. Having the size and the
orientation, you only need to calculate the position of the OBB before you can
place it in the world. Figure 7.9 shows a simplified 2D image of a character’s arm.
If you need to place the upper arm bounding box, you just take the two end points
(points A and B) of the upper arm bone and place the bounding box at the middle
point of these two end points. The following piece of code comes from the Ragdoll
class and does just this:

152 Character Animation with Direct3D

struct Bone: public D3DXFRAME

{

D3DXMATRIX CombinedTransformationMatrix;

OBB *m_pObb;

};

...

OBB* RagDoll::CreateBoneBox(Bone* parent, Bone *bone,

D3DXVECTOR3 size, D3DXQUATERNION rot)

{

if(bone == NULL || parent == NULL)

return NULL;

//Get bone starting point

D3DXMATRIX &parentMat = parent->CombinedTransformationMatrix;

D3DXVECTOR3 parentPos(parentMat(3, 0),

parentMat(3, 1),

parentMat(3, 2));

//Get bone end point

D3DXMATRIX &boneMat = bone->CombinedTransformationMatrix;

D3DXVECTOR3 bonePos(boneMat(3, 0), boneMat(3, 1), boneMat(3, 2));

Chapter 7 Ragdoll Simulation 153

FIGURE 7.9
Fitting an OBB to a bone.

//Extract the rotation from the bone

D3DXQUATERNION q;

D3DXVECTOR3 p, s;

D3DXMatrixDecompose(&s, &q, &p, &parentMat);

//Offset rotation (in some cases only)

q *= rot;

D3DXQuaternionNormalize(&q, &q);

//Calculate the middle point

p = (parentPos + bonePos) * 0.5f;

//Create new OBB

OBB *obb = new OBB(p, size, q, true);

//Add the OBB to the physics engine

physicsEngine.GetWorld()->addRigidBody(obb->m_pBody);

//Add OBB to the ragdoll’s own list

m_boxes.push_back(obb);

//Connect the bone to the OBB

parent->m_pObb = obb;

return obb;

}

As you can see, I’ve added a pointer to an OBB in the Bone structure. Each bone
now has a pointer to an Oriented Bounding Box. Through this pointer the bone can
retrieve the current position and orientation of the physical representation as the
simulation runs. Other than this, the OBB is created and placed as explained earlier.
Creating the Oriented Bounding Boxes is, of course, only the first step. If you run
the physics simulation now, you would see the boxes fall to the floor disjointed
from each other. Next you’ll need to connect them in a proper manner before you
have a ragdoll. This is the real tricky part and the hardest part to get right (i.e., to
produce good-looking results). As covered earlier in Example 7.2, I’ll use the hinge
and twist cone constraints to hold the boxes in place. Take another look at Figure
7.9. When you place the constraints you will now place them in between the boxes
instead, in the points A, B, and C. The following function in the Ragdoll class
creates a twist cone constraint between two Oriented Bounding Boxes (a similar
function exists to create a hinge constraint):

154 Character Animation with Direct3D

void RagDoll::CreateTwistCone(Bone* parent, OBB* A, OBB* B,

float limit, D3DXVECTOR3 hingeAxisA,

D3DXVECTOR3 hingeAxisB, bool ignoreCollisions)

{

if(parent == NULL || A == NULL || B == NULL)

return;

//Extract the constraint position

D3DXMATRIX &parentMat = parent->CombinedTransformationMatrix;

btVector3 hingePos(parentMat(3, 0),

parentMat(3, 1),

parentMat(3, 2));

D3DXVECTOR3 hingePosDX(parentMat(3, 0),

parentMat(3, 1),

parentMat(3, 2));

//Get references to the two rigid bodies you want to connect

btRigidBody *a = A->m_pBody;

btRigidBody *b = B->m_pBody;

//Get world matrix from the two rigid bodies

btTransform aTrans, bTrans;

a->getMotionState()->getWorldTransform(aTrans);

b->getMotionState()->getWorldTransform(bTrans);

D3DXMATRIX worldA = BT2DX_MATRIX(aTrans);

D3DXMATRIX worldB = BT2DX_MATRIX(bTrans);

//Calculate pivot point for both rigid bodies

D3DXVECTOR3 offA, offB;

D3DXMatrixInverse(&worldA, NULL, &worldA);

D3DXMatrixInverse(&worldB, NULL, &worldB);

D3DXVec3TransformCoord(&offA, &hingePosDX, &worldA);

D3DXVec3TransformCoord(&offB, &hingePosDX, &worldB);

btVector3 offsetA(offA.x, offA.y, offA.z);

btVector3 offsetB(offB.x, offB.y, offB.z);

//Set constraint axis

aTrans.setIdentity();

bTrans.setIdentity();

aTrans.setOrigin(offsetA);

bTrans.setOrigin(offsetB);

aTrans.getBasis().setEulerZYX(

hingeAxisA.x, hingeAxisA.y, hingeAxisA.z);

Chapter 7 Ragdoll Simulation 155

bTrans.getBasis().setEulerZYX(

hingeAxisB.x, hingeAxisB.y, hingeAxisB.z);

//Create new twist cone constraint

btConeTwistConstraint *twistC;

twistC = new btConeTwistConstraint(*a, *b, aTrans, bTrans);

//Set Constraint limits

twistC->setLimit(limit, limit, 0.05f);

//Add constraint to the physics engine

physicsEngine.GetWorld()->addConstraint(twistC, true);

}

This function is generally pretty straightforward. The only tricky thing in here
is to calculate the pivot point for the two rigid bodies. Since the pivot point needs
to be in the local space of the rigid body, you have to multiply the world-space
location of the pivot point with the inverse of the rigid body’s world matrix. Next
I set the constraint axes and limits, and finally the constraint is added to the
physics simulation. There’s now only one final thing left to do, and that is to make
use of these two functions and create the ragdoll. The following is an excerpt from
the constructor of the RagDoll class:

RagDoll::RagDoll(char fileName[], D3DXMATRIX &world) : SkinnedMesh()

{

//Load the character from an .x file

SkinnedMesh::Load(fileName);

//Set beginning pose

SetPose(world);

//Find bones to use in the construction of the ragdoll

//...

Bone* U_R_Arm=(Bone*)D3DXFrameFind(m_pRootBone,"Upper_Arm_Right");

Bone* L_R_Arm=(Bone*)D3DXFrameFind(m_pRootBone,"Lower_Arm_Right");

Bone* R_Hand=(Bone*)D3DXFrameFind(m_pRootBone, "Hand_Right");

//...

D3DXQUATERNION q;

D3DXQuaternionIdentity(&q);

156 Character Animation with Direct3D

//...

//Right arm (two bounding boxes)

OBB* o03 = CreateBoneBox(U_R_Arm, L_R_Arm,

D3DXVECTOR3(0.3f, 0.12f, 0.12f), q);

OBB* o04 = CreateBoneBox(L_R_Arm, R_Hand,

D3DXVECTOR3(0.3f, 0.12f, 0.12f), q);

//...

//Constraints

//...

CreateTwistCone(U_R_Arm, o08, o03, D3DX_PI * 0.6f,

D3DXVECTOR3(0.0f, D3DX_PI * 0.75f, 0.0f),

D3DXVECTOR3(0.0f, 0.0f, 0.0f));

CreateHinge(L_R_Arm, o03, o04, 0.0f, -2.0f,

D3DXVECTOR3(0.0f, 0.0f, D3DX_PI * 0.5f),

D3DXVECTOR3(0.0f, 0.0f, D3DX_PI * 0.5f));

}

To keep this code excerpt from taking up too many pages, I show only how the
arm of the ragdoll is set up. You’ll find the complete initialization of the ragdoll in the
next example. However, as you can see, the character is first loaded as a skinned mesh
from an .x file. Next I set the pose I want to use as the bind pose for the character
while creating the ragdoll. Then I use the CreateBoneBox(), CreateTwistCone(), and
CreateHinge() functions to create the full physical representation of the character. As
always, you’ll find the full code for the ragdoll setup in Example 7.3.

Chapter 7 Ragdoll Simulation 157

UPDATING THE CHARACTER MESH FROM THE RAGDOLL

The final step before having complete ragdoll animation is of course to connect
the bone hierarchy to the physical representation. This way, the bones (and in
turn, the mesh) will be updated as the ragdoll flails about. Remember that you use
many fewer Oriented Bounding Boxes than you use bones to avoid simulating the
small unnecessary bones like fingers and toes, etc. However, if the hand bone (the
parent of a finger bone) has a physical representation, then when the combined
transformation matrix of this bone is updated, its child bone(s) will also be
updated. Already in the previous section of this chapter I added a pointer to an
OBB in the Bone structure. Now that I want to be able to update a bone hierarchy,
some more information is needed in this structure:

158 Character Animation with Direct3D

EXAMPLE 7.3

In Example 7.3 there’s finally something resembling a character. The ragdoll
here is built up by Oriented Bounding Boxes bound together by hinge and

twist cone constraints. As the physics simulation runs, the ragdoll seems to fall in a
(somewhat) realistic manner. Use the technique shown in this example to try and
build another ragdoll (perhaps something other than a biped).

struct Bone: public D3DXFRAME

{

D3DXMATRIX CombinedTransformationMatrix;

//Pointer to an OBB (if any)

OBB *m_pObb;

//The bone’s pivot point (offset from OBB center)

D3DXVECTOR3 m_pivot;

//Original orientation of this bone

D3DXQUATERNION m_originalRot;

};

You’ll see later how I use the pivot point and the original orientation of the
bone to calculate the new position and orientation based on the bone’s OBB. I
have already covered the creation of the Oriented Bounding Boxes and how they
are assigned to their corresponding bones. Now all you need to do is calculate the
new bone matrices as the boxes are simulated by the physics engine. First off, let’s
start with the position of the bones.

GETTING A BONE’S POSITION FROM AN OBB

Before you continue further, have another look at how the revised OBB class now looks
(a lot has changed in this class since Chapter 6). Some of the ragdoll-specific functions
of this class will be explained in further detail throughout the rest of this chapter.

class OBB

{

public:

OBB(D3DXVECTOR3 pos,

D3DXVECTOR3 size,

bool dynamic=true);

OBB(D3DXVECTOR3 pos,

D3DXVECTOR3 size,

D3DXQUATERNION rot,

bool dynamic=true);

void Init(D3DXVECTOR3 pos,

D3DXVECTOR3 size,

D3DXQUATERNION rot,

bool dynamic=true);

Chapter 7 Ragdoll Simulation 159

~OBB();

void Release();

void Update(float deltaTime);

void Render();

D3DXVECTOR3 SetPivot(D3DXVECTOR3 pivot);

D3DXVECTOR3 GetPivot(D3DXVECTOR3 pivot);

D3DXQUATERNION GetRotation(D3DXQUATERNION orgBoneRot);

public:

btRigidBody *m_pBody;

D3DXVECTOR3 m_size;

D3DXQUATERNION m_orgRot;

private:

ID3DXMesh *m_pMesh;

};

To be able to calculate the bone position on the fly from an OBB’s transfor-
mation matrix, you need to first calculate the bone’s pivot point. This is, in other
words, the position of the bone in the OBB world space. The pivot point is
calculated at the initialization of the ragdoll and then used during runtime to
calculate the new position for the bone. To get this initial pivot point I’ve added
the following function to the OBB class:

D3DXVECTOR3 OBB::SetPivot(D3DXVECTOR3 pivot)

{

btMotionState *ms = m_pBody->getMotionState();

if(ms == NULL)return D3DXVECTOR3(0.0f, 0.0f, 0.0f);

D3DXMATRIX world = BT2DX_MATRIX(*ms);

D3DXVECTOR3 newPivot;

D3DXMatrixInverse(&world, NULL, &world);

D3DXVec3TransformCoord(&newPivot, &pivot, &world);

return newPivot;

}

Here I simply extract the world matrix from the initial motion state of the box.
Next I multiply the position of the bone (the pivot parameter) with the inverse of the
OBB’s world matrix. The result (the pivot point in relation to the OBB) is returned.
In runtime you should use the following function to do the exact opposite of the
SetPivot() function:

160 Character Animation with Direct3D

D3DXVECTOR3 OBB::GetPivot(D3DXVECTOR3 pivot)

{

btMotionState *ms = m_pBody->getMotionState();

if(ms == NULL)return D3DXVECTOR3(0.0f, 0.0f, 0.0f);

D3DXMATRIX world = BT2DX_MATRIX(*ms);

D3DXVECTOR3 newPivot;

D3DXVec3TransformCoord(&newPivot, &pivot, &world);

return newPivot;

}

Here the pivot you supply is the one that was calculated in the initialization
using the previous function, but in runtime the motion state of the box has changed
and so the result from this function is the new position for the bone. Next you need
to perform this exact operation, but for the orientation instead.

GETTING A BONE’S ORIENTATION FROM AN OBB

This one is perhaps a little trickier since it involves some quaternion math. But the
thought process is the same. You should compare the box’s current orientation
with its original orientation, getting the change in orientation, and apply it to the
bone’s original orientation. The result is a bone whose orientation matches that of
the physical representation (the box).

D3DXQUATERNION OBB::GetRotation(D3DXQUATERNION orgBoneRot)

{

btMotionState *ms = m_pBody->getMotionState();

btTransform t;

ms->getWorldTransform(t);

D3DXQUATERNION rot = BT2DX_QUATERNION(t.getRotation());

D3DXQUATERNION invOrgRot;

D3DXQuaternionInverse(&invOrgRot, &m_orgRot);

D3DXQUATERNION diff = invOrgRot * rot;

return orgBoneRot * diff;

}

Here the current orientation of the box is extracted. Then you calculate the
delta quaternion—i.e., the rotation operation that rotates the box’s original ori-
entation to its current orientation. This is done by multiplying the inverse of the
starting orientation with destination orientation. Then this delta quaternion is

Chapter 7 Ragdoll Simulation 161

applied to the original orientation of the bone. This operation rotates the bone
from its original orientation as much as the box’s orientation has changed from
its original orientation. The orientation is calculated this way using the difference
between the current and the original orientations of the box, since the bone and
the box might have had different orientations to begin with. Finally you just need
to traverse through the bone hierarchy and update the transformation matrices.

UPDATING THE BONE HIERARCHY

To update the bone hierarchy, all you need to do is traverse the hierarchy each
frame, query the position and orientation of any bones connected to an OBB, and
update the transformation matrix of that bone. Once a bone’s matrix has been
updated, it is also important to pass this change forward to any child bones that bone
may have (using the UpdateMatrices() function). To do all this I’ve created the
UpdateSkeleton() function in the Ragdoll class which should be called each frame:

void RAGDOLL::UpdateSkeleton(BONE* bone)

{

if(bone == NULL)

return;

if(bone->m_pObb != NULL)

{

//Calculate new position for the bone

D3DXMATRIX pos;

D3DXVECTOR3 pivot = bone->m_pObb->GetPivot(bone->m_pivot);

D3DXMatrixTranslation(&pos, pivot.x, pivot.y, pivot.z);

//Calculate new orientation for the bone

D3DXMATRIX rot;

D3DXMatrixRotationQuaternion(&rot,

&bone->m_pObb->GetRotation(bone->m_originalRot));

//Combine to create new transformation matrix

bone->CombinedTransformationMatrix = rot * pos;

//Update children bones with our new transformation matrix

if(bone->pFrameFirstChild != NULL)

UpdateMatrices((BONE*)bone->pFrameFirstChild,

&bone->CombinedTransformationMatrix);

}

162 Character Animation with Direct3D

//Traverse the rest of the bone hierarchy

UpdateSkeleton((BONE*)bone->pFrameSibling);

UpdateSkeleton((BONE*)bone->pFrameFirstChild);

}

Done! That about wraps it up! If you run the simulation now, the mesh will
follow the physical representation of the character and seemingly fall and interact
with the environment, etc. You can see a series of images in Figure 7.10 where a
character falls and is updated at runtime using the ragdoll animation presented in
this chapter.

Chapter 7 Ragdoll Simulation 163

FIGURE 7.10
A sequence of images from the ragdoll simulation.

To the left in Figure 7.10 you see the character mesh and to the right is the
corresponding physical representation. Check out Example 7.4 where you’ll find
the complete ragdoll simulation code.

CONCLUSIONS

Although this chapter is perhaps the most technically advanced in this book, it is
also one of the most rewarding. By giving the character a physical representation,
you can simulate the character in real-time as he falls or gets hit, etc. As cool as this
may seem, the simple Ragdoll example presented in this chapter is still far from the
quality you see in commercial games. However, I hope that this serves as a good
primer or starting point for you to implement your own ragdoll animation. There

164 Character Animation with Direct3D

EXAMPLE 7.4

Here at last is the Ragdoll example. The character model has been skinned
to the bone hierarchy (just like in Chapter 3 and onward). However, this time

you don’t update the character from a pre-created animation, but rather on the fly using
the Bullet physics engine. This is still a pretty rough example. Spend some time to
tweak the myriad of variables to see if you can make the simulation look better!

are several improvements to be made to this system. For example, you may want to
try using shapes other than boxes. The Bullet engine’s Ragdoll example used cap-
sules, for instance. Another thing you should look into is damping and figuring out
when to turn off the physical simulation of a ragdoll (both to save CPU cycles and
to stop that micro twitching you can see in the examples of this chapter). Check out
the Bullet library (or whatever physics engine you chose to use) documentation for
more information. In the next chapter I will move away from skeletal animation
and will cover morphing animation. Over the course of the next couple of chapters,
I will show you how to implement organic animation, such as facial expression,
talking characters, and more.

CHAPTER 7 EXERCISES

Explore the Bullet physics library. Try to implement a bullet (a force) issuing
from the mouse cursor that affects the items in any of the examples in this
chapter.
Add more geometry to the scene with which the ragdoll can collide.
Try to mess with the gravity of the physics engine. For example, try zero-
gravity simulations (which look pretty cool with the ragdoll).
Explore other shapes, such as cylinders and capsules instead of boxes.
Try different configurations for the joints. Make use of the hinge, twist cone,
and perhaps even the Bullet engine’s 6DoF constraint.
Extend Example 7.4 to simulate more than one ragdoll.
Implement damping of the ragdoll.

FURTHER READING
[VanVerth04] Van Verth, Jim, “Using Covariance Matrix for Better-Fitting Bounding
Objects.” Game Programming Gems 4, Charles River Media, 2004.

Chapter 7 Ragdoll Simulation 165

This page intentionally left blank

167

Morphing Animation8

So far this book has looked only at skeletal animation. In today’s games this method
is used almost exclusively to animate the game characters’ movements. However,
it wasn’t always so. For example, the first Quake game used characters animated
using morphing animation instead. This chapter covers the basics of morphing
animation (also known as per-vertex animation). This concept will also be taken
one step further by combining morphing animation with skeletal animation In this
chapter, you'll find:

Introduction to morphing animation
Morphing animation on the GPU with vertex shaders
Combining morphing animation with skeletal animation

BASICS OF MORPHING ANIMATION

In skeletal animation, each vertex was linked to one or more bones with associated
weights. In morphing animation, however, two or more positions are stored per
vertex and are simply blended using linear interpolation (LERP). Each predefined
vertex position is called a morph target. Once you have a list of morph targets, you
can blend between them using weights (just as in skeletal animation), as shown in
the following formula:

v1 = [x1, y1, z1]
v2 = [x2, y2, z2]

v = v2 • p + v1 • (1 – p)

The equation above describes how to create a blended vertex v between the two
morph targets v1 and v2 (using simple LERP). This same example is also illustrated
in Figure 8.1, where a new vertex position is calculated with a weight of 32%:

In the same way the position of the vertex is animated, you can also animate
the vertex normal, UV coordinates, etc. The following code is an excerpt from
Example 8.1, where a morphed mesh is created from two target meshes. A morphed
mesh is created from two target meshes by performing the blend before rendering
in the CPU:

168 Character Animation with Direct3D

FIGURE 8.1
Blending the position of a single vertex using two morph targets
and one weight.

BYTE *target01, *target02, *face;

//Lock morph target vertex buffers

m_pTarget01->LockVertexBuffer(D3DLOCK_READONLY, (void**)&target01);

m_pTarget02->LockVertexBuffer(D3DLOCK_READONLY, (void**)&target02);

//Lock destination vertex buffer

m_pFace->LockVertexBuffer(0, (void**)&face);

//Blend the morph targets and store in the destination mesh

for(int i=0; i<m_pFace->GetNumVertices(); i++)

{

//Get position of the two target vertices

D3DXVECTOR3 t1 = *((D3DXVECTOR3*)target01);

D3DXVECTOR3 t2 = *((D3DXVECTOR3*)target02);

D3DXVECTOR3 *f = (D3DXVECTOR3*)face;

//Perform morphing

*f = t2 * m_blend + t1 * (1.0f - m_blend);

//Move to next vertex

target01 += m_pTarget01->GetNumBytesPerVertex();

target02 += m_pTarget01->GetNumBytesPerVertex();

face += m_pFace->GetNumBytesPerVertex();

}

//Unlock all vertex buffers

m_pTarget01->UnlockVertexBuffer();

m_pTarget02->UnlockVertexBuffer();

m_pFace->UnlockVertexBuffer();

Since the position element is always the first thing in a vertex, you don’t really need
to know the actual vertex format of the mesh. You can simply cast the BYTE pointer
to a D3DXVECTOR3 object to get the position element of a vertex. Then you add the
number of bytes per vertex to the BYTE pointer to access the next vertex.

However, this is a hack that you shouldn’t use in a “proper” application. Instead
you should cast to whatever vertex structure you are using and perform the blending
on all elements: position, normal, UV coordinate, etc.

This code shows how morphing can be done easily on the CPU. First you lock
all the vertex buffers (both target meshes and destination mesh). Then you iterate
through all the vertices in the destination mesh and set its new vertex positions to

Chapter 8 Morphing Animation 169

a blend between the two target meshes. The blend amount is defined by the m_blend
variable. As you can see, it doesn’t require that much code to get a basic example of
morphing animation up and running. Have a look at Example 8.1 on the CD-ROM
for the full code.

USING MULTIPLE MORPH TARGETS

In the previous example you learned how to blend between two morph
targets. The next step is to blend between more than just two morph targets.
Imagine, for example, that you have a set of mouth shapes you want to use to
make the character look like he’s talking. You also have a second set of morph
targets controlling the blinking of the eyelids. If it were only possible to blend two

170 Character Animation with Direct3D

EXAMPLE 8.1

In this example, software morphing is implemented, performing the mor-
phing calculation using the CPU. Use the Up and Down keys to change the

blend amount used. As you can see in this example, it is possible to have weights
outside the range [0.0–1.0].

morph targets simultaneously, it would be impossible to have the character blink
his eyes and talk at the same time. Luckily, of course, this is not the case.

To blend more than one morph target, you need a base mesh from which all
the morph targets are compared. In the case of a character face, the base mesh
would be the face without expressions and emotions, etc. Figure 8.2 shows the
expressionless base mesh and the different target meshes:

Chapter 8 Morphing Animation 171

FIGURE 8.2
Blending more than two morph targets to produce the final mesh.

In mathematical terms, this could be described something like this:

Base = [xb, yb, zb]
Morph1= [x1, y1, z1]
Morph2= [x2, y2, z2]
…
Morphn= [xn, yn, zn]

W= [w1, w2,…wn]

Morphn= [xn, yn, zn]

v = base + �((Morphi – base)*wi)

Base denotes a vertex from the base mesh. Morph1 to Morphn describes the cor-
responding vertices in the morph targets. W is the collection of weights—one weight
for each morph target. The final vertex v is then calculated by adding the weighted
difference between the base and the morph targets to the original base vertex.

As shown in Figure 8.2, the morph targets are weighted before being added to
the base mesh. To blend more than one morph target, you then use the following
algorithm:

ID3DXMesh *pBaseMesh;

ID3DXMesh *pDestMesh;

vector<ID3DXMesh*> morphTargets;

vector<float> weights;

//Load base mesh, morph target meshes, and set weights

//Also create the destination mesh as a clone of the base mesh

//For each vertex in the base mesh

for(int vertex = 0; vertex < pBaseMesh->GetNumVertices(); vertex++)

{

//Get vertex position

D3DXVECTOR3 pos = GetVertexPosition(pBaseMesh, vertex);

172 Character Animation with Direct3D

i=1

n

//Create a new position

//(which will be the final blended vertex position)

D3DXVECTOR3 newPos = pos;

//For each active morph target (it’s weight != zero)

for(int target = 0; target < morphTargets.size(); target++)

{

If(weights[vertex] == 0.0f)

continue;

//Get morph targets vertex position

D3DXVECTOR3 targetPos;

targetPos = GetVertexPosition(morphTargets[target], vertex);

//Add the weighted difference to the final position

newPos += (targetPos – pos) * weights[vertex];

}

//Assign the new position to the destination mesh

SetVertexPosition(pDestMesh, vertex, newPos);

}

The preceding code demonstrates how to blend multiple morph targets to pro-
duce the final morphed mesh. For each vertex of the mesh, you iterate through the
morph targets; compare the vertex position of the base mesh and the target mesh.
Then add the weighted difference to the final vertex position. This means that if the
weight is zero or the vertex position of the target mesh is the same as the vertex
position of the base mesh, then the final position of the vertex won’t be changed.

Revisit Example 8.1. On the CD-ROM you will also find a third morph target
(face03.x) in the resource folder of Example 8.1. Try to edit Example 8.1 to
blend between all three morph targets on the CD using the pseudo-code above.
Remember that “face01.x” is the base mesh to which you should compare
“face02.x” and “face03.x.”

MORPHING ANIMATION ON THE GPU

So far, all the morphing has been done in software, which, as you can imagine, can
be pretty slow (especially for large meshes with many morph targets). Instead,
here’s how you can do the morphing animation in the GPU. The problem with

Chapter 8 Morphing Animation 173

performing the morphing animation in hardware lies in the fact that the vertex
shader operates on one vertex at a time. You have to upload more than one position
element per vertex (one position for the base mesh, and one for each active morph
target). The same applies to vertex normals (and, if necessary, UV coordinates and
other vertex elements you want to blend between).

So far the format of a vertex has been defined using the old flexible vertex format
(FVF). A typical vertex may then be defined something like this:

struct Vertex

{

D3DXVECTOR3 position;

D3DXVECTOR3 normal;

D3DXVECTOR2 uv;

static const DWORD FVF;

};

...

const DWORD Vertex::FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1;

A struct is declared holding position, normal, and UV information. The flexible
vertex format (FVF) is also defined using the corresponding FVF codes. As you learn
more advanced animation techniques, the flexible vertex format (however flexible)
is not enough. Next I’ll show you how to declare your own custom-made vertex
formats that can be made available to a vertex shader.

CUSTOM VERTEX FORMATS

To create your own vertex format, you need to create an array of D3DVERTEXELEMENT9
objects. This array tells the rendering pipeline how to interpret the stream of input
data. Before the vertex data is sent to the vertex shader, you first need to interpret
the long bit stream of ones and zeros, as shown in Figure 8.3.

The bits of ones and zeros come in bytes (groups of eight), which in this case are
interpreted to float values (each consisting of four bytes). The float values in turn are
used by the position, normal, and UV coordinates using 3, 3, and 2 floats, respec-
tively. Finally, each vertex (in this example) consists of one position, one normal,
and one UV coordinate. To help the vertex shader interpret this seemingly random
data, you need to create a vertex declaration (IDirect3DVertexDeclaration9). To do
this you first need to define an array of vertex elements (D3DVERTEXELEMENT9). The
D3DVERTEXELEMENT9 structure looks like this:

174 Character Animation with Direct3D

struct D3DVERTEXELEMENT9 {

WORD Stream; //Stream No

WORD Offset; //Start of this element in bytes

BYTE Type; //Element type (float1 ... float4, D3DCOLOR, etc.)

BYTE Method; //Tesselation method

BYTE Usage; //Usage of element (position, normal, color, etc.)

BYTE UsageIndex; //Suffix number used in the vertex shader

};

Stream

The stream number is nothing more than an index to the data stream from which this
element will be interpreted. During rendering it is possible to have several active
streams at the same time. With the concept of multiple streams it becomes possible
to mix and match data from several sources (vertex buffers) to the final vertex shader.

Offset

This is the byte offset in the data input stream to the data you want interpreted to a
specific vertex element. In a vertex buffer, for example, the position data is usually
in the beginning of each element (i.e., at offset zero). The position contains three
float values each containing four bytes. This means that whatever vertex data follows
the position data, it will be located at offset 12.

Type

The type of the vertex element tells the vertex shader how to interpret the data
stream. It also tells the vertex shader how much data to read in from the stream
(since each type also has a corresponding size). The list of different vertex element

Chapter 8 Morphing Animation 175

FIGURE 8.3
Interpreting the data input stream to vertex data.

176 Character Animation with Direct3D

types is long—see the DirectX documentation for the entire list. However, some of
the most important types are listed in Table 8.1. Knowing these are enough for you
to understand the examples in this book.

Method

The method member in the vertex element structure deals with tessellation only
and is beyond the scope of this book.

Usage

More important than the type is the usage of the data. The value of this member in
the D3DVERTEXELEMENT9 structure will define how the vertex shader uses the data.
The ones you need to know for this book are listed in Table 8.2 (of course there are
more than these; again, see the DirectX documentation for the entire list).

TABLE 8.1 VERTEX ELEMENT TYPES

Type Description

D3DDECLTYPE_FLOAT1 A single float value

D3DDECLTYPE_FLOAT2 Two float values corresponding to the D3DXVECTOR2 structure

D3DDECLTYPE_FLOAT3 Three float values corresponding to the D3DXVECTOR3 structure

D3DDECLTYPE_FLOAT4 Four float values corresponding to the D3DXVECTOR4 structure

D3DDECLTYPE_D3DCOLOR Four bytes (DWORD) mapped to RGBA in the shader

D3DDECLTYPE_UBYTE4 Four unsigned bytes

TABLE 8.2 VERTEX ELEMENT USAGE

Type Description

D3DDECLUSAGE_POSITION Position of the vertex (X, Y, Z)

D3DDECLUSAGE_COLOR Color of the vertex (R, G, B, A)

D3DDECLUSAGE_NORMAL Vertex normal (X, Y, Z)

D3DDECLUSAGE_TEXCOORD Texture coordinate (U, V)

D3DDECLUSAGE_BLENDWEIGHT Blend weights for hardware skinning

D3DDECLUSAGE_BLENDINDICES Blend indices for hardware skinning

UsageIndex

The usage index tells the vertex shader which index the data belongs to. For example,
in the case of multiple positions being sent to the same vertex shader, the UsageIndex
is used to tell them apart. They are then referred to POSITION0, POSITION1, POSITION2,
etc. according to the usage index.

CREATING THE MORPH VERTEX DECLARATION

With the D3DVERTEXELEMENT9 structure, you can build vertex formats with the exact
information you need for your specific application. For example, in the case of
morphing animation you need to have several positions for each vertex and you
want each of these positions to come from an individual mesh. This data from
multiple sources is then merged to form the final vertex that your morphing shader
can process (as shown in Figure 8.4).

The following code shows the array of vertex elements that make up the morph
vertex declaration:

//The morph vertex format

D3DVERTEXELEMENT9 morphVertexDecl[] =

{

//Stream 0: Base Mesh

{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 0},

{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 0},

Chapter 8 Morphing Animation 177

FIGURE 8.4
Creating data input streams from multiple meshes.

{0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 0},

//Stream 1: 1st Morph Target

{1, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 1},

{1, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 1},

{1, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 1},

//Stream 2: 2nd Morph Target

{2, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 2},

{2, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 2},

{2, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 2},

//Stream 3: 3rd Morph Target

{3, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 3},

{3, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 3},

{3, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 3},

//Stream 4: 4th Morph Target

{4, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 4},

{4, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 4},

{4, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 4},

D3DDECL_END()

};

The values in this array are listed in the order (Stream No, Offset, Type, Method,
Usage, and UsageIndex). Note that five streams are used: one for the base mesh and
four for the different morph targets. In this case the stream number corresponds
with the usage index (although this is not necessarily always the case). From each

178 Character Animation with Direct3D

stream (source vertex buffer), I am (in this vertex shader) interested only in the
position, normal, and texture coordinate. Later, you’ll learn to use things like blend
weights and blend indices as well, but more on that later. Each vertex element array
must end with the D3DDECL_END() macro.

Before you can use your custom vertex element array, you need to compile it
into a vertex declaration. This is done in the following manner:

//The Custom Vertex Declaration

IDirect3DVertexDeclaration9 *m_pDecl = NULL;

//Create the vertex declaration using the D3DVERTEXELEMENT9 array

pDevice->CreateVertexDeclaration(morphVertexDecl, &m_pDecl);

After you have created the vertex declaration (which is using multiple streams),
you can assign a vertex buffer to each stream like this:

//Get size per vertex in bytes

DWORD vSize = D3DXGetFVFVertexSize(m_pBaseMesh->GetFVF());

//Set base stream

IDirect3DVertexBuffer9* baseMeshBuffer = NULL;

m_pBaseMesh->GetVertexBuffer(&baseMeshBuffer);

pDevice->SetStreamSource(0, baseMeshBuffer, 0, vSize);

//Set target streams

for(int i=0; i<4; i++)

{

IDirect3DVertexBuffer9* targetMeshBuffer = NULL;

m_pTargets[i]->GetVertexBuffer(&targetMeshBuffer);

pDevice->SetStreamSource(i + 1, targetMeshBuffer, 0, vSize);

}

//Set index buffer

IDirect3DIndexBuffer9* ib = NULL;

m_pBaseMesh->GetIndexBuffer(&ib);

pDevice->SetIndices(ib);

The base mesh is set to be stream source 0 and each of the subsequent morph
targets set to be source 1 to 4. Note also that the active index buffer is set using the
index buffer of the base mesh (remember that it is a requirement for morphing
animation that all targets have the same polygon structure).

Chapter 8 Morphing Animation 179

Next you’ll need to send the weights for the four morph targets to the vertex
shader. Since you need one float for each of the morph targets, you can use a
D3DXVECTOR4 to hold the weights. The following code creates some random
weights and uploads these to the vertex shader:

//Create some weights as a D3DXVECTOR4

D3DXVECTOR4 weights((rand()%1000) / 1000.0f,

(rand()%1000) / 1000.0f,

(rand()%1000) / 1000.0f,

(rand()%1000) / 1000.0f);

//Upload weights to shader

m_pEffect->SetVector("morphWeights", &weights);

The weights can then be accessed in the shader as (x, y, z, w) or (r, g, b, a). Finally,
you are ready to send all the vertex data to the vertex shader and render something to
the screen.

THE MORPHING VERTEX SHADER

Alright, so far you have learned how to create a custom vertex format, how to create
a vertex declaration from that, and how to hook up the different input meshes as dif-
ferent stream sources. The input data will be available to the vertex shader according
to how you set the UsageIndex in the vertex declaration. The corresponding data will
be available to you using the suffix number of the data element you want to access
(POSITION0, POSITION1, POSITION2, etc.). In the vertex shader, the following input and
output structures are defined for the morphing vertex data:

//Vertex Input

struct VS_INPUT

{

float4 basePos : POSITION0;

float3 baseNorm : NORMAL0;

float2 baseUV : TEXCOORD0;

float4 targetPos1 : POSITION1;

float3 targetNorm1 : NORMAL1;

float4 targetPos2 : POSITION2;

float3 targetNorm2 : NORMAL2;

180 Character Animation with Direct3D

float4 targetPos3 : POSITION3;

float3 targetNorm3 : NORMAL3;

float4 targetPos4 : POSITION4;

float3 targetNorm4 : NORMAL4;

};

//Vertex Output / Pixel Shader Input

struct VS_OUTPUT

{

float4 position : POSITION0;

float2 tex0 : TEXCOORD0;

float shade : TEXCOORD1;

};

The input structure matches the custom vertex declaration created in the earlier
section. (Note, however, that you don’t have to make use of the UV coordinates of all
the target meshes since using the UV coordinates from the base mesh is enough.) The
output structure simply returns one position (the result of the morphing animation),
one texture coordinate, and one lighting value (from basic directional lighting).

Note that it is very important that the vertex shader input structure matches the
vertex declaration (data types + usage index). Otherwise, you’ll most likely
experience a blue-screen crash that requires a hard reboot of your computer.

Next is the actual vertex shader itself:

//Vertex Shader

VS_OUTPUT vs_lighting(VS_INPUT IN)

{

VS_OUTPUT OUT = (VS_OUTPUT)0;

float4 pos = IN.basePos;

float3 norm = IN.baseNorm;

//Blend Position

pos += (IN.targetPos1 - IN.basePos) * weights.r;

pos += (IN.targetPos2 - IN.basePos) * weights.g;

pos += (IN.targetPos3 - IN.basePos) * weights.b;

pos += (IN.targetPos4 - IN.basePos) * weights.a;

Chapter 8 Morphing Animation 181

//Blend Normal

norm += (IN.targetNorm1 - IN.baseNorm) * weights.r;

norm += (IN.targetNorm2 - IN.baseNorm) * weights.g;

norm += (IN.targetNorm3 - IN.baseNorm) * weights.b;

norm += (IN.targetNorm4 - IN.baseNorm) * weights.a;

//Getting the position of the vertex in the world

float4 posWorld = mul(pos, matW);

float4 normal = normalize(mul(norm, matW));

//Transforming to screen space

OUT.position = mul(posWorld, matVP);

OUT.shade = max(dot(normal, normalize(lightPos - posWorld)), 0.2f);

OUT.tex0 = IN.baseUV;

return OUT;

}

You can see here how the four morph targets are compared to the base mesh,
and the difference is weighted and added to the final position of the vertex. In the
exact same way, the normal is weighted and added. After the final position and
normal have been calculated, the shader is fairly elementary, transforming the
position to screen space, calculating a per-vertex lighting value, and copying the
texture coordinate for the pixel shader. You can find the entire effect (.fx) file on
the accompanying CD-ROM, along with the pixel shader and technique.

182 Character Animation with Direct3D

COMBINING SKELETAL AND MORPHING ANIMATION

In this section you’ll learn how to combine skeletal animation with morphing
animation. There are many cases when you might want to use this technique. As
a basic rule you should use it when an object is changing shape in ways other than
bending limbs around joints (transformations of the skeletal kind). It can also be
used when trying to achieve the desired result using only skeletal animation
would cause you to add an unreasonable amount of bones. In this section, the
two morph targets shown in Figure 8.5 will be used to create an example of a
skinned and morphing character.

Chapter 8 Morphing Animation 183

EXAMPLE 8.2

After a whole lot of work, finally there is morphing animation running on
the GPU. In this example, the weights for the morph targets are changed

randomly over time.

In Chapter 3 I covered how to do the skeletal animation on the GPU. First the
mesh was converted to an Index Blended Mesh, and then a vertex shader was used,
to which the matrix palette (bone matrices) was uploaded. To combine a skinned
mesh with a morphing animation, you simply apply what you have learned in this

184 Character Animation with Direct3D

FIGURE 8.5
The two morph targets used for the werewolf example. (Both models have
467 vertices and 930 polygons.)

chapter with what you learned back in Chapter 3. In the vertex shader the morph-
ing animation is first performed like it was done in Example 8.2. Then the morphed
vertex position is used with the skeletal index blended transformations. Figure 8.6
shows an overview of how this is done:

As previously stated, whenever you do a morphing animation it is important that all
target meshes have the same amount of vertices and that the polygons are configured
the same way. The position, normal, and texture coordinates of a vertex can change,
of course, but other mesh attributes should remain the same across all target meshes.

SKELETAL/MORPHING VERTEX FORMAT

You already know from previous sections how to set up new custom vertex formats.
In the last example there were several input streams, one for each morph target. In
this example, however, you will have only two morph targets: the human mesh and
the werewolf mesh. The human mesh has skinning information as well as a running
animation. Here’s the custom vertex format that will be used (note the blend indices
and the blend weights; also, you only get the texture coordinates from the human
mesh since they are the same for both meshes):

Chapter 8 Morphing Animation 185

FIGURE 8.6
Combining skeletal animation with morphing animation.

D3DVERTEXELEMENT9 morphVertexDecl[] =

{

//Stream 0: Human Skinned Mesh

{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 0},

{0, 12, D3DDECLTYPE_FLOAT1, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_BLENDWEIGHT, 0},

{0, 16, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_BLENDINDICES, 0},

{0, 20, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 0},

{0, 32, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 0},

//Stream 1: Werewolf Morph Target

{1, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 1},

{1, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 1},

D3DDECL_END()

};

The next trick to perform is to set up the different streams. In this example the
two meshes are stored in the same .x file. The meshes are loaded using the same code
used to load the skinned meshes back in Chapter 3. Hopefully you remember how
the bone hierarchy was created from the .x file and how it was traversed to render the
skinned mesh. Now there are two meshes in the bone hierarchy: the skinned human
mesh and the static werewolf mesh. Here’s the code that finds the static werewolf
mesh in the hierarchy and sets it as stream source 1:

//Set werewolf stream

//Find bone named "werewolf" located in the m_pRootBone hierarchy

D3DXFRAME* wolfBone = D3DXFrameFind(m_pRootBone, "werewolf");

if(wolfBone != NULL)

{

//If bone contains a mesh container then this is the werewolf mesh

if(wolfBone->pMeshContainer != NULL)

{

//Get werewolf vertex buffer

ID3DXMesh* wolfmesh;

wolfMesh = wolfBone->pMeshContainer->MeshData.pMesh;

186 Character Animation with Direct3D

DWORD vSize = D3DXGetFVFVertexSize(wolfmesh->GetFVF());

IDirect3DVertexBuffer9* wolfMeshBuffer = NULL;

wolfmesh->GetVertexBuffer(&wolfMeshBuffer);

//Set vertex buffer as stream source 1

pDevice->SetStreamSource(1, wolfMeshBuffer, 0, vSize);

}

}

Now all you need to do is search though the hierarchy and find the mesh that
has skinning information (this will be the skinned human mesh). Then set this
mesh to be stream source 0 as well as the index buffer and render the mesh using
the DrawIndexedPrimitive() function:

void RenderHuman(BONE *bone)

{

//If there is a mesh to render...

if(bone->pMeshContainer != NULL)

{

BONEMESH *boneMesh = (BONEMESH*)bone->pMeshContainer;

if (boneMesh->pSkinInfo != NULL)

{

// Set up bone transforms and the matrix palette here

...

//Get size per vertex in bytes

DWORD vSize = D3DXGetFVFVertexSize(

boneMesh->MeshData.pMesh->GetFVF());

//Set base stream (human)

IDirect3DVertexBuffer9* baseMeshBuffer = NULL;

boneMesh->MeshData.pMesh->GetVertexBuffer(

&baseMeshBuffer);

pDevice->SetStreamSource(0, baseMeshBuffer, 0, vSize);

//Set index buffer

IDirect3DIndexBuffer9* ib = NULL;

boneMesh->MeshData.pMesh->GetIndexBuffer(&ib);

pDevice->SetIndices(ib);

//Start shader

D3DXHANDLE hTech;

hTech = pEffect->GetTechniqueByName("Skinning");

Chapter 8 Morphing Animation 187

pEffect->SetTechnique(hTech);

pEffect->Begin(NULL, NULL);

pEffect->BeginPass(0);

//Draw mesh

pDevice->DrawIndexedPrimitive(

D3DPT_TRIANGLELIST, 0, 0,

boneMesh->MeshData.pMesh->GetNumVertices(), 0,

boneMesh->MeshData.pMesh->GetNumFaces());

pEffect->EndPass();

pEffect->End();

}

}

if(bone->pFrameSibling != NULL)

RenderHuman((BONE*)bone->pFrameSibling);

if(bone->pFrameFirstChild != NULL)

RenderHuman((BONE*)bone->pFrameFirstChild);

}

That about covers all you need to do on the application side to set up skinned
morphing animation. The next thing to look at is the vertex shader that will read all
this data in and make the final calculations before presenting the result onto the screen.

SKELETAL/MORPHING VERTEX SHADER

This vertex shader is basically just the offspring of the marriage between the skinned
vertex shader in Chapter 3 and the morphing shader from this chapter. The input
structure matches the custom vertex format created in the previous section:

//Morph Weight

float shapeShift;

//Vertex Input

struct VS_INPUT_SKIN

{

float4 position : POSITION0;

float3 normal : NORMAL0;

float2 tex0 : TEXCOORD0;

float4 weights : BLENDWEIGHT0;

int4 boneIndices : BLENDINDICES0;

188 Character Animation with Direct3D

float4 position2 : POSITION1;

float3 normal2 : NORMAL1;

};

//Vertex Output / Pixel Shader Input

struct VS_OUTPUT

{

float4 position : POSITION0;

float2 tex0 : TEXCOORD0;

float shade : TEXCOORD1;

};

VS_OUTPUT vs_SkinningAndMorphing(VS_INPUT_SKIN IN)

{

VS_OUTPUT OUT = (VS_OUTPUT)0;

//Perform the morphing

float4 position = IN.position +

(IN.position2 - IN.position) * shapeShift;

//Perform the skinning (just as in Chapter 3)

float4 p = float4(0.0f, 0.0f, 0.0f, 1.0f);

float3 norm = float3(0.0f, 0.0f, 0.0f);

float lastWeight = 0.0f;

int n = NumVertInfluences-1;

IN.normal = normalize(IN.normal);

for(int i = 0; i < n; ++i)

{

lastWeight += IN.weights[i];

p += IN.weights[i] *

mul(position, FinalTransforms[IN.boneIndices[i]]);

norm += IN.weights[i] *

mul(IN.normal, FinalTransforms[IN.boneIndices[i]]);

}

lastWeight = 1.0f - lastWeight;

p += lastWeight *

mul(position, FinalTransforms[IN.boneIndices[n]]);

norm += lastWeight *

mul(IN.normal, FinalTransforms[IN.boneIndices[n]]);

Chapter 8 Morphing Animation 189

p.w = 1.0f;

float4 posWorld = mul(p, matW);

OUT.position = mul(posWorld, matVP);

OUT.tex0 = IN.tex0;

//Calculate Lighting

norm = normalize(norm);

norm = mul(norm, matW);

OUT.shade = max(dot(norm, normalize(lightPos - posWorld)), 0.2f);

return OUT;

}

//Pixel Shader

float4 ps_lighting(VS_OUTPUT IN) : COLOR0

{

//Sample human texture

float4 colorHuman = tex2D(HumanSampler, IN.tex0);

//Sample wolf texture

float4 colorWolf = tex2D(WolfSampler, IN.tex0);

//Blend the result based on the shapeShift variable

float4 c = (colorHuman*(1.0f-shapeShift) + colorWolf*shapeShift);

return c * IN.shade;

}

Here’s the pixel shader that blends between the two textures (human/werewolf)
as well. Note that it is based on the same shapeShift variable used to blend the two
meshes. You can find the full shader code on the CD-ROM in Example 8.3.

190 Character Animation with Direct3D

CONCLUSIONS

This chapter covered the basics of morphing animation, starting with morphing
done in software and then progressing to advanced morphing done on the GPU
with several morph targets, etc. There was also a brief glimpse of combining
skeletal animation with morphing animation. The next chapter focuses on how
to make a proper face for the character with eyes looking around, emotions
showing, eye lids blinking, and much more.

Chapter 8 Morphing Animation 191

EXAMPLE 8.3

Example 8.3 implements a morphing character (werewolf) combined with
skeletal animation. It is a simple morphing animation using only two

morph targets (human and werewolf). This technique will be extended later on in the
book when facial animation for skinned characters is covered.

CHAPTER 8 EXERCISES

Create a simple object in any 3D modeling software. Make a clone of the object
and change the UV coordinates of this clone. Implement morphing of the UV
coordinates as explained in this chapter.
This technique can be used for more than just characters. Experiment with
other biological shapes (plant life, blobs, fungi, etc). Create, for example, a tree
swaying in the wind.
Try to preprocess the morph targets so that they contain the difference be-
tween the original morph target and the base mesh. Update the vertex shader
accordingly. This way you can save some GPU cycles during the runtime
morphing.

192 Character Animation with Direct3D

193

Facial Animation9

This chapter expands upon what you learned in the previous chapter. Building on
simple morphing animation, you can create complex facial animations quite easily.
The most problematic thing is always to create a good “infrastructure,” making
loading and setting of the stream sources and so on as simple as possible. I’ll also
cover how to add eyes to the character and make him look at a specific point. To top
it all off, I’ll conclude this chapter by showing you how to create a facial factory
system much like those seen in games like Oblivion™ or Fallout 3™. With a system
like this you can let the user create a custom face for his/her character or even use it
to generate large crowds with unique faces. In this chapter, you’ll find the following:

Adding eyes to the character
Loading multiple facial morph targets from a single .x file
The Face and the FaceController classes
A face factory system for generating faces in runtime

FACIAL ANIMATION OVERVIEW

In the creation of believable computer game characters, it is becoming increasingly
important that characters convey their emotions accurately through body lan-
guage and facial expressions. Giving the player subtle information like NPC facial
expressions can greatly increase the immersion of a particular game. Take Alyx in
Half Life 2™, for example—her face conveys worry, fear, happiness, and many
other emotions.

You have already learned in the previous chapter all you need to know to
technically implement facial animation. All it comes down to is blending multiple
meshes together. However, there are several other things you need to think about
before you start blending those meshes. In real human beings, facial expression is
controlled by all those muscles just under the skin called the mimetic muscles.
There are just over 50 of these muscles, and with them the whole range of human
emotion can be displayed. Digital animation movies may go so far as to model the
muscles in a character’s face, but in computer games that level of realism still lies
in the future. So for interactive applications like computer games, we are (for
now) left with morphing animation as the best approach to facial animation.
However, no matter which technique you choose, it is important that you under-
stand the underlying principles of facial expressions.

FACIAL EXPRESSIONS

Facial expressions are a form of non-verbal communication that we primates excel
in. They can convey information about a person’s emotion and state of mind. Facial
expressions can be used to emphasize or even negate a verbal statement from a
person. Check out Figure 9.1 for an example.

It is also important to realize that things like the orientation of the head and
where the character is looking plays a big part in how you would interpret a facial
expression. For example, if a character avoids looking you in the eye when talking
to you it could be taken as a sign that he or she is not telling you the truth.

194 Character Animation with Direct3D

This chapter will focus on the most obvious types of facial motion:

Speech
Emotion
Eye movements

Chapter 9 Facial Animation 195

FIGURE 9.1
The same verbal message combined with different
emotions can produce different meanings.

I will only briefly touch on the subject of character speech in this chapter since
the entire next chapter deals with this topic in more depth. In this chapter you’ll
learn one approach to setting up the infrastructure needed for facial animation.

THE EYE OF THE BEHOLDER

So far throughout this book the character has had hollows where his eyes are sup-
posed to be. This will now be corrected. To do this you simply take a spherical
mesh (eyeball mesh) and apply a texture to stick it in the two hollows of the face.
Next you’ll need the eyes to focus on the same location, thus giving the impression
that the character is looking at something. This simple look-at behavior is shown
in Figure 9.2.

To implement this simple behavior, I’ve created the Eye class as follows:

class Eye

{

public:

Eye();

void Init(D3DXVECTOR3 position);

void Render(ID3DXEffect *pEffect);

void LookAt(D3DXVECTOR3 focus);

196 Character Animation with Direct3D

FIGURE 9.2
A somewhat freaky image showing several eyeballs focusing on
the same focus point.

private:

D3DXVECTOR3 m_position;

D3DXVECTOR3 m_lookAt;

D3DXMATRIX m_rotation;

};

The Init() function sets the eye at a certain position; the Render() function
renders the eye using the provided effect. The most interesting function is of course
the LookAt() function, which calculates the eye’s m_rotation matrix. The rotation
matrix is created by calculating the angle difference between the position of the eye
and the focus point. For this you can use the atan2() function, which takes a delta
x and a delta y value and calculates the angle from these:

void Eye::LookAt(D3DXVECTOR3 focus)

{

//Rotation around the Y axis

float rotY = atan2(m_position.x - focus.x,

m_position.z - focus.z) * 0.8f;

//Rotation around the Z axis

float rotZ = atan2(m_position.y - focus.y,

m_position.z - focus.z) * 0.5f;

D3DXMatrixRotationYawPitchRoll(&m_rotation, rotY, rotZ, 0.0f);

}

The Eye class is implemented in full in Example 9.1 on the CD-ROM.

Chapter 9 Facial Animation 197

THE FACE CLASS

It is now time to put all you’ve done so far into a single class: the Face class. It will
contain all the render targets, eyes, and vertex declarations as well as the morphing
shader used to render it. Later this class will be extended to cooperate with the
skinned mesh and ragdoll characters created in the earlier chapters. For now,
however, let us just consider a single face!

You will find when you try to send several render targets to a morphing ver-
tex shader that you eventually run out of either instruction slots or input registers
(depending on which vertex shader version your graphic card supports). Also,

198 Character Animation with Direct3D

EXAMPLE 9.1

Now the character finally has some eyeballs. You’ll notice when you move
the mouse cursor around that his gaze zealously follows it.

Note that this example is really simple and it requires the character’s
face to be looking along the Z axis. In Chapter 11 inverse kinematics
will be covered and with it a proper Look-At algorithm.

blending a large amount of render targets in real-time would take its toll on the
frame rate, especially if you blend faces with large amounts of vertices. In this
book I’ll stick with four render targets since that is about as much as can be
crammed into the pipeline when using vertex shaders of version 2.0.

You can have only four active render targets at a time per face (without diving
into more advanced facial animation techniques). Note, however, that I’m speaking
about active render targets. You will need to have plenty more render targets in total
to pull off believable facial animation. Here’s a list of some render targets you would
do well to create whenever creating a new face for a game:

Base mesh
Blink mesh
Emotion meshes (smile, frown, fear, etc.)
Speech meshes (i.e., mouth shapes for different sounds; more on this in the
next chapter)

I won’t cover the process of actually creating the meshes themselves. There are
plenty of books in the market for each of the major 3D modeling programs available.
I stress again though that for morphing animation to work, the vertex buffer of each
render target needs to contain the same amount of vertices and the index buffer needs
to be exactly the same. The easiest way to achieve this is to first create the base mesh
and then create clones of the base mesh and alter them to produce the different
render targets.

Performing operations on a render target after copying it from the base mesh, such
as adding or deleting faces or vertices, flipping faces, etc., will result in an invalid
render target.

I’ll assume now that you have a base mesh, blink mesh, emotion meshes, and
speech meshes created in your 3D modeling program. There are two approaches to
how you can store these meshes and make them available to your game. Either you
store each mesh in individual .x files, or you store them all in the same file. Although
the simpler approach (to implement) would be to load the different render targets
from individual files using the D3DXLoadMeshFromX() function, we will attempt the
trickier approach. You’ll see in the end that the extra effort of writing code to import
the render targets from a single file per face will save you a lot of hassle and time
exporting the many faces.

Chapter 9 Facial Animation 199

LOADING MULTIPLE TARGETS FROM ONE .X FILE

You may be thinking that this topic has already been covered. Well, that’s true. You
already know how to load multiple meshes from a single .x file. This was done
when you learned how to create a skinned character. The only difference now is
that you don’t want all these meshes to be contained in a D3DXFRAME hierarchy like
in the case of a skinned character. If you loaded an .x file containing several meshes
using the D3DXLoadMeshFromX() function, it would collapse all the separate meshes
into one single ID3DXMesh object for you. Since this is not what is wanted, another
way must be found. As when a skinned mesh was loaded, you implemented your
own custom version of the ID3DXAllocateHierarchy interface. This time around I
will only use the name of the D3DXFRAME to identify which mesh is which. Here
follows the full listing of the FaceHierarchyLoader class (implementing the ID3DX-
AllocateHierarchy interface) used to load multiple meshes from a single .x file:

class FaceHierarchyLoader : public ID3DXAllocateHierarchy

{

public:

STDMETHOD(CreateFrame)(THIS_ LPCSTR Name,

LPD3DXFRAME *ppNewFrame);

STDMETHOD(CreateMeshContainer)(THIS_ LPCTSTR Name,

CONST D3DXMESHDATA * pMeshData,

CONST D3DXMATERIAL * pMaterials,

CONST D3DXEFFECTINSTANCE * pEffectInstances,

DWORD NumMaterials, CONST DWORD * pAdjacency,

LPD3DXSKININFO pSkinInfo,

LPD3DXMESHCONTAINER * ppNewMeshContainer);

STDMETHOD(DestroyFrame)(THIS_ LPD3DXFRAME pFrameToFree);

STDMETHOD(DestroyMeshContainer)(

THIS_ LPD3DXMESHCONTAINER pMeshContainerBase);

};

HRESULT FaceHierarchyLoader::CreateFrame(LPCSTR Name,

LPD3DXFRAME *ppNewFrame)

{

D3DXFRAME *newBone = new D3DXFRAME;

memset(newBone, 0, sizeof(D3DXFRAME));

//Copy name (used to tell one mesh from another)

if(Name != NULL)

{

200 Character Animation with Direct3D

newBone->Name = new char[strlen(Name)+1];

strcpy(newBone->Name, Name);

}

//Return the new bone...

*ppNewFrame = newBone;

return S_OK;

}

HRESULT FaceHierarchyLoader::CreateMeshContainer(LPCSTR Name,

CONST D3DXMESHDATA *pMeshData,

CONST D3DXMATERIAL *pMaterials,

CONST D3DXEFFECTINSTANCE *pEffectInstances,

DWORD NumMaterials,

CONST DWORD *pAdjacency,

LPD3DXSKININFO pSkinInfo,

LPD3DXMESHCONTAINER *ppNewMeshContainer)

{

//Add reference so that the mesh isn't de-allocated

pMeshData->pMesh->AddRef();

//Return pointer to mesh casted to a D3DXMESHCONTAINER pointer

ppNewMeshContainer = (D3DXMESHCONTAINER)pMeshData->pMesh;

return S_OK;

}

I create a frame pretty much the same way as I did in the earlier examples when
a skinned mesh was loaded. The only difference is that the basic D3DXFRAME structure
is used and the initialization of the transformation matrix, etc. is ignored. In the
CreateMeshContainer() function, input such as materials, skin information, and so
on is completely ignored. Instead the function just returns a pointer to the loaded
mesh data. You now have a minimum D3DXFRAME hierarchy containing only the
frame name and the meshes without any skin information and textures, etc. The
next step is to traverse this structure and extract the different meshes and store
them in the Face class instead.

EXTRACTING MESHES FROM A D3DXFRAME HIERARCHY

Hopefully you remember from Chapter 3 that a hierarchy is built up using the two
pointers pFrameSibling and pFrameFirstChild stored in a D3DXFRAME object. The
D3DXFRAME structure also stores a pointer to a D3DXMESHCONTAINER object, which can

Chapter 9 Facial Animation 201

202 Character Animation with Direct3D

contain a mesh. So all you need to do now in order to extract a certain mesh is to
traverse the structure and find the D3DXFRAME that has the name of the mesh you are
looking for. The following function does just that by searching the hierarchy
recursively and returning a mesh with a certain name (if there is one to be found):

ID3DXMesh* ExtractMesh(D3DXFRAME *frame, string name)

{

//Does this frame have a mesh?

if(frame->pMeshContainer != NULL)

{

ID3DXMesh *mesh = (ID3DXMesh*)frame->pMeshContainer;

//This is the mesh we are searching for!

if(frame->Name != NULL &&

strcmp(frame->Name, name.c_str()) == 0)

{

mesh->AddRef();

return mesh;

}

}

//Otherwise check siblings and children

ID3DXMesh *result = NULL;

if(frame->pFrameSibling != NULL)

{

result = ExtractMesh (frame->pFrameSibling, name);

}

if(result == NULL && frame->pFrameFirstChild != NULL)

{

result = ExtractMesh (frame->pFrameFirstChild, name);

}

return result;

}

IMPLEMENTING THE FACE CLASS

You now know all you need in order to move on to the first implementation of the
Face class. I will build on this class over the next couple of chapters until we finally
have a complete character at the end of the book.

class Face

{

public:

Face(string filename);

~Face();

void TempUpdate();

void Render();

void ExtractMeshes(D3DXFRAME *frame);

public:

ID3DXMesh *m_pBaseMesh;

ID3DXMesh *m_pBlinkMesh;

vector<ID3DXMesh*> m_emotionMeshes;

vector<ID3DXMesh*> m_speechMeshes;

IDirect3DVertexDeclaration9 *m_pFaceVertexDecl;

IDirect3DTexture9 *m_pFaceTexture;

ID3DXEffect *m_pEffect;

D3DXVECTOR4 m_morphWeights;

Eye m_eyes[2];

};

Table 9.1 describes the members of the Face class.

Chapter 9 Facial Animation 203

TABLE 9.1 FACE MEMBERS

m_pBaseMesh The original mesh to which all render targets will be compared.

m_pBlinkMesh The blink mesh (character’s eyelids closed).

m_emotionMeshes: An array of render targets containing emotion meshes.

m_speechMeshes An array of render targets containing speech meshes.

m_pFaceVertexDecl The face morph vertex declaration.

m_pFaceTexture The face texture.

m_pEffect The effect used for the morphing animation.

m_morphWeights The weights for the morphing animation.

m_eyes[2] Two instances of the EYE class handling the rendering, etc. of each eye.

First a Face class is created by loading multiple meshes from a single .x file as
covered earlier in this chapter. Then the ExtractMeshes() function is called to assign
the correct meshes to the m_pBaseMesh, m_pBlinkMesh, m_emotionMeshes, and
m_speechMeshes. The ExtractMeshes() function is an extension of the general
ExtractMesh() function covered earlier. The ExtractMeshes() function sorts each of
the meshes of a face hierarchy (remember that there can be more than one mesh
with the same name). After that, the face is rendered as was done in Chapter 8
where morphing animation was covered.

At the moment there is some logic in the Face class updating the morph targets
and the morph weights. However, the goal is to make the Face class a simple
resource container and put the facial logic in another class. Therefore, let’s move on

204 Character Animation with Direct3D

EXAMPLE 9.2

In Example 9.2 on the CD-ROM you will find the first implementation of the
Face class. Multiple render targets are loaded from a single .x file using a

custom-implemented ID3DXAllocateHierarchy. Then the meshes are extracted
from the hierarchy and used to render the animated face. In this example the render
targets are blended in a completely random way.

and look at implementing a class that will take care of updating a face and render
multiple instances of the same face.

THE FACE CONTROLLER STRUCTURE

So far I have only cared about rendering one face. However, many times you want
to use the same face and render several characters with it (although with different
expressions, etc.). Therefore, think of the Face class only as a resource container
containing the necessary meshes (render targets). The information of how the
face is supposed to be rendered I will stick into a new class, which I’ll call the Face-
Controller class. This class will point to a Face class of which the FaceController
class will set the active render targets and their weights before rendering the face.
The FaceController class will also contain the eyes and control the rendering and
updating of these as well.

ANIMATION CHANNELS

Remember that you only have a limited number of render targets available when you
do your morphing animation using a vertex shader. In the case of VS 2.0 (which I
use in the examples), you can push one base mesh around four render targets. I will
refer to each of these possible render targets as an animation channel. There are a few
different ways you can choose to use these animation channels. I have chosen to use
one channel for the eye blinking, one for emotion render targets, and the final two
channels for speech. This is, however, only one of many methods, and you should
pick the configuration that best suits your needs. Figure 9.3 shows how I intend to
use the four animation channels throughout this book.

Chapter 9 Facial Animation 205

FIGURE 9.3
The use of the four animation channels.

I suppose Figure 9.3 requires some additional explanation.

Blink Channel: This channel uses only one render target (the face with the eye-
lids closed). In Figure 9.3 there are two times that the eyes blink (B1 and B2). You
see the weights go up and down in a nice bell-shaped curve when this happens.
Emotion Channel: The emotion channel can be used by many different render
targets but only one at a time. This means that if you want to change from a
happy to a sad render target, you first have to fade out the happy render target
to 0% before fading in the sad render target. You can see an example of this in
Figure 9.3, where E1 is faded out to give way for E2.
Speech Channels: To create nice-looking speech, you’ll need at least two
animation channels. This is to avoid always fading out a render target before
starting the next. You can see this in Figure 9.3 with S1, S2, and S3. See how
S2 starts before S1 has ended (same with S3 and S2). This is possible because
more than one animation channel is used.

Each animation channel has one render target and one render weight at all
times. The FaceController simply keeps track of this information and renders a
Face by first setting the correct render targets and their corresponding weights. The
definition of the FaceController class is as follows:

class FaceController

{

friend class Face;

public:

FaceController(D3DXVECTOR3 pos, FACE *pFace);

void Update(float deltaTime);

void Render();

public:

Face *m_pFace;

int m_emotionIndex;

int m_speechIndices[2];

D3DXVECTOR4 m_morphWeights;

D3DXMATRIX m_headMatrix;

Eye m_eyes[2];

};

206 Character Animation with Direct3D

Table 9.2 describes the FaceController members.

Chapter 9 Facial Animation 207

TABLE 9.2 FACECONTROLLER MEMBERS

m_pFace: A pointer to the Face class containing the render targets.

m_emotionIndex: Index to emotion render target.

m_speechIndices[2]: Indices for the speech render targets (one for each animation
channel)

m_morphWeights: A vector of four floats containing the weights for each of the four
animation channels.

m_headMatrix: The world location/orientation and scale of the head.

m_eyes[2]: The eye’s of this particular face.

EXAMPLE 9.3

Example 9.3 renders three faces using the same Face class but with different
FaceController classes. As you can see, the location and expression/

emotion of the three faces are completely different at all times.

FACE FACTORY

Anyone who has modeled a face for a game knows it takes a long time to get right.
First you’ll have to make the model, and then you’ll have to UV-map the face so
that textures are applied correctly. Then you will have to create normal maps for
the face, which in itself is a very time-consuming process. After this, you’ll have to
create the texture for the face, and finally you will have to create slightly edited
copies of the face for the render targets. All this work goes into making just a
single face. Now imagine that you have to make an army of individual-looking
faces.… Surely there must be a better way then to repeat this time-consuming
process for each of the soldiers in the army?

There is, of course. For the game Oblivion™, developers generated faces and
also let the players design their own faces for the characters they would be playing.
Figure 9.4 shows some screenshots of Oblivion and the characters created within it.

In this section I will look at creating a system for generating faces in runtime,
just as in Oblivion. To achieve this, you will of course have to spend some more
time and energy to create the generation system, but the result makes it possible for
you to generate armies of individual faces at the click of a button.

To begin, I suggest that you revisit the code in Example 8.1, where a simple
morphing calculation on the CPU was done, and the result was stored in a mesh.
This is basically the whole idea behind creating a facial generation system. So far
you have had render targets that change the face by giving it emotions, blinking
eyelids, etc. However, there is nothing stopping us from changing the actual shape
of a face altogether. Imagine that you have two copies of the same face, one with a

208 Character Animation with Direct3D

FIGURE 9.4
Some faces created in the game Oblivion™.

broad nose and one with a thin nose. Voila! You now can interpolate between the
two meshes to create a wide variety of noses. Now, take this idea a bit further and
add all possible variations you can think of (not just the nose). Here’s a list of some
of the render targets you can add into the equation:

Nose width, height, length, and shape
Mouth width, position, and shape
Eye position and size
Ear shape and position
Jaw shape
Head shape

Imagine that you have a long array of these meshes. All you need to do now in
order to generate a new unique face is to randomize a weight for each of the faces
and blend them together with additive blending using the CPU and store the result
in a new mesh. This process is shown in Figure 9.5.

Chapter 9 Facial Animation 209

FIGURE 9.5
The process of generating a new face.

Figure 9.5 shows you how the base mesh is transformed by blending multiple
weighted render targets and storing the result in a new mesh. However, the Face class
has more meshes than just the base mesh. You need to perform the exact same
procedure (with the same weights) for all of the emotion, speech, and blinking
meshes within that face before you have a new face. To take care of the generation
of new faces, I’ve created the FaceFactory class:

class FaceFactory

{

public:

FaceFactory(string filename);

~FaceFactory();

FACE* GenerateRandomFace();

private:

void ExtractMeshes(D3DXFRAME *frame);

ID3DXMesh* CreateMorphTarget(ID3DXMesh* mesh,

vector<float> &morphWeights);

public:

ID3DXMesh *m_pBaseMesh;

ID3DXMesh *m_pBlinkMesh;

ID3DXMesh *m_pEyeMesh;

vector<ID3DXMesh*> m_emotionMeshes;

vector<ID3DXMesh*> m_speechMeshes;

vector<ID3DXMesh*> m_morphMeshes;

vector<IDirect3DTexture9*> m_faceTextures;

};

This class has a lot in common with the Face class. There’s the base mesh,
plus the blinking, emotion, and speech meshes. There’s also a similar function for
loading all the meshes from an .x file and extracting them from the hierarchy.
What’s new in this class is the array of render targets called m_morphMeshes. In this
array, the render target that holds the different head, mouth, eye, and nose
shapes, etc., is stored. There’s also a function for generating a random face, and,
as you can see, it returns a Face class that can be used with a face controller just
as in previous examples. The following code is an excerpt from the FaceFactory
class where a new random face is generated:

210 Character Animation with Direct3D

Face* FaceFactory::GenerateRandomFace()

{

//Create random 0.0f - 1.0f morph weight for each morph target

vector<float> morphWeights;

for(int i=0; i<(int)m_morphMeshes.size(); i++)

{

float w = (rand()%1000) / 1000.0f;

morphWeights.push_back(w);

}

//Next create a new empty face

Face *face = new Face();

//Then clone base, blink, and all emotion and speech meshes

face->m_pBaseMesh = CreateMorphTarget(m_pBaseMesh,

morphWeights);

face->m_pBlinkMesh = CreateMorphTarget(m_pBlinkMesh,

morphWeights);

for(int i=0; i<(int)m_emotionMeshes.size(); i++)

{

face->m_emotionMeshes.push_back(

CreateMorphTarget(m_emotionMeshes[i], morphWeights));

}

for(int i=0; i<(int)m_speechMeshes.size(); i++)

{

face->m_speechMeshes.push_back(

CreateMorphTarget(m_speechMeshes[i], morphWeights));

}

//Set a random face texture as well

int index = rand() % (int)m_faceTextures.size();

m_faceTextures[index]->AddRef();

face->m_pFaceTexture = m_faceTextures[index];

//Return the new random face

return face;

}

Chapter 9 Facial Animation 211

In this function I first create an array of floats (one weight for each morph
mesh). Then using this array I create a new morph target for each of the face meshes
(base, blink, emotion, and speech meshes) using the CreateMorphTarget() function:

ID3DXMesh* FaceFactory::CreateMorphTarget(

ID3DXMesh* mesh, vector<float> &morphWeights)

{

if(mesh == NULL || m_pBaseMesh == NULL)

return NULL;

//Clone mesh

ID3DXMesh* newMesh = NULL;

if(FAILED(mesh->CloneMeshFVF(D3DXMESH_MANAGED,

mesh->GetFVF(), pDevice, &newMesh)))

{

//Failed to clone mesh

return NULL;

}

//Copy base mesh data

FACEVERTEX *vDest = NULL, *vSrc = NULL;

FACEVERETX *vMorph = NULL, *vBase = NULL;

mesh->LockVertexBuffer(D3DLOCK_READONLY, (void**)&vSrc);

newMesh->LockVertexBuffer(0, (void**)&vDest);

m_pBaseMesh->LockVertexBuffer(D3DLOCK_READONLY, (void**)&vBase);

for(int i=0; i < (int)mesh->GetNumVertices(); i++)

{

vDest[i].m_position = vSrc[i].m_position;

vDest[i].m_normal = vSrc[i].m_normal;

vDest[i].m_uv = vSrc[i].m_uv;

}

mesh->UnlockVertexBuffer();

//Morph base mesh using the provided weights

for(int m=0; m<(int)m_morphMeshes.size(); m++)

{

if(m_morphMeshes[m]->GetNumVertices() == mesh->GetNumVertices())

{

212 Character Animation with Direct3D

m_morphMeshes[m]->LockVertexBuffer(D3DLOCK_READONLY,

(void**)&vMorph);

for(int i=0; i < (int)mesh->GetNumVertices(); i++)

{

vDest[i].m_position +=

(vMorph[i].m_position - vBase[i].m_position) *

morphWeights[m];

vDest[i].m_normal +=

(vMorph[i].m_normal - vBase[i].m_normal) *

morphWeights[m];

}

m_morphMeshes[m]->UnlockVertexBuffer();

}

}

newMesh->UnlockVertexBuffer();

m_pBaseMesh->UnlockVertexBuffer();

return newMesh;

}

The CreateMorphTarget() function creates a new target mesh for the new face
by blending all the morph meshes with the provided weights. Note that this
process runs on the CPU and is not limited to any amount of affecting morph
meshes; it simply takes longer if you use more meshes to generate your random
face. This is something to keep in mind if you plan to generate lots of faces. Also,
since the faces are unique, it might affect your memory usage quite a lot. As said
before, the resulting face generated by a FaceFactory can be used exactly like the
original face with the FaceController class, the Eye class, etc. Some faces generated
using this technique can be seen in Figure 9.6.

Chapter 9 Facial Animation 213

214 Character Animation with Direct3D

FIGURE 9.6
Custom faces generated using the FaceFactory class.

CONCLUSIONS

In this chapter you learned the basics of facial animation and how to use morphing
animation to put together a simple Face class. I also separated the logic from the Face
class and stuffed it into the FaceController, making the Face class a strict resource
container. This way, many characters can reference the same face and render it with
different expressions using the FaceController class.

Finally, we looked at a way of generating faces using CPU morphing as pre-
processing stage. This can be a great way to produce variety in the non-player
characters (NPCs) you meet in games such as RPGs, etc. It can also be one way
for a small team to produce a large number of faces without having to create a
new face for each character they intend to create.

Chapter 9 Facial Animation 215

EXAMPLE 9.4

This final example of this chapter shows you how to generate faces in
runtime using the FaceFactory class. You can generate a new face in

runtime by pressing the space bar.

As an additional benefit, this system is easily extended to let the players them-
selves create their own faces for their characters (such as was seen in Oblivion, for
example).

In the next chapter I’ll focus on making talking characters, and I will cover
topics such as lip-syncing.

CHAPTER 9 EXERCISES

Create/blend the following emotions: anger, concentration, contempt, desire,
disgust, excitement, fear, happiness, confusion, sadness, surprise.
Make the eyes twitch—i.e., shift to random spots every once in a while as a part
of the Eye class.
Make functions for the FaceController class to set and control the current
emotion.
Make a program wherein the user can create a face by tuning the morph
weights.

216 Character Animation with Direct3D

217

Making Characters Talk10

You now have some idea of how to animate a character face using morphing ani-
mation as shown in the previous chapter. In this chapter I’ll try to show you the ba-
sics of how to map speech to different mouth shapes of a character (a.k.a.
lip-syncing). First I’ll cover phonemes (the different sounds we make while talking),
and then I’ll cover the visemes (the phonemes’ visual counterparts). After that I’ll
briefly cover in general terms how speech analysis is done to extract the phonemes
from a recorded speech. Finally, I’ll build a simple automated lip-syncing system.

This chapter covers the following:

Phonemes
Visemes
Basics of speech analysis
Automatic lip-syncing

PHONEMES

A phoneme could be called the atom of speech. In other words, it is the smallest
discernable sound of a word that you hear. In the English language there are about
44 phonemes. I say about, because with the various dialects and regional differ-
ences you can add (or remove) a few of these phonemes. Table 10.1 shows a list of
the most common phonemes found in the English language.

218 Character Animation with Direct3D

TABLE 10.1 ENGLISH PHONEMES

Phoneme Example Written Phonetically

Vowels i: tea /ti:/

i happy /hæpi/

I bit /bIt/

e leg /leg/

æ cat /cæt/

a: father /fa: (r)/

dog /d g/

: daughter /d :t /

sugar /� g /

u: too /tu:/

� cup /k�p/

3: bird /b3:(r)d/

about / ba t/

�

continued

e

e

e

e e

a

c

� �

�

c

a

Chapter 10 Making Characters Talk 219
Phoneme Example Written Phonetically

Diphthongs eI say /seI/

boat /b t/

aI my /maI/

I boy /b I/

a wow /wa /

I near /nI r/

e hair /he (r)/

poor /p (r)/

Consonants p pen /pen/

b baby /beIbi/

t toy /t I/

d diary /daI ri/

k key /ki:/

g game /geIm/

t� cheese /t�i:z/

d3 jump /d3 mp/

f fire /feI (r)/

v video /vId /

	 thumb /	 m/

they / eI/

s sing /sI
/

z zero /zi:r /

� shop /� p/

3 vision /vI3In/

h hot /h t/

ο

continued

e

ee

e

e

e

cc

� e �

e

�

�

e �

e

��

�

e

e

v

v

c

a

a

ο

There are many different notations for depicting phonemes. It doesn’t matter
much which notation you use as long as you understand the concept of phonemes.
For example, check out Figure 10.1 where you can see the waveform of the sen-
tence, “My, my…what have we here?”

In Figure 10.1 the phonemes are shown below the actual words. Try to record
a sentence yourself and use the phonemes in Table 10.1 to place the right phonemes
in the right places. Just speak the words slowly and match the sounds to the corre-
sponding phoneme. This is the easiest way to manually extract phonemes from a
sentence. Later on I’ll discuss the theory of how this can be done with software.

220 Character Animation with Direct3D

Phoneme Example Written Phonetically

m amaze / meIz/

n news /nju:z/

 building /bIldI
/

l laugh /la:�/

r rain /reIn/

j yes /jes/

w wood /w d/

FIGURE 10.1
An example sentence with phonemes.

e

�

There are a lot of text-to-speech applications that take text as input, transforming
it into a series of phonemes that can be played back. A good place to start for text-
to-speech programming is Microsoft’s Speech API (SAPI). This API contains a lot
of tools you can use, such as phoneme extraction, text-to-speech, and more.

When creating lip-syncing for game characters, it is not that important that you
match all phonemes in a sentence just right. There are two reasons for this. First,
several phonemes will have the same mouth shape (i.e., viseme). So whether you
classify a sound as /a:/ or /æ/ has no impact on the end result. Secondly, timing is
more important because it is easier for people to notice this type of error. If you
have ever seen a dubbed movie, you know what I’m talking about. So, let’s say you
now have a recorded speech and you have dotted down the phonemes used in the
sentence on a piece of paper… Now what?

VISEMES

Whereas a phoneme is the smallest unit of speech that you can hear, a viseme is the
smallest unit of speech that you can see. In other words, a viseme is the shape your
mouth makes when making a particular phoneme. Not only is the mouth shape im-
portant, but the positions of your tongue and your teeth matter too. For example,
try saying the following phonemes: /n/ (news) and /a:/ (father). The mouth shape
remains pretty much the same, but did you notice the difference? The tongue went
up to the roof of the mouth while saying /n/, and when you said /a:/ the tongue was
lying flat on the “floor” of the mouth. This is one of many small visual differences
that our subconscious easily detects whenever it is wrong, or “off.”

Deaf people have learned to take great advantage of this concept when they do
lip reading. If you’ve ever seen a foreign movie dubbed to your native tongue, you
have witnessed a case where the phonemes (what you hear) and the visemes (what
you see) don’t match. In games these days we try to minimize this gap between
phonemes and visemes as much as possible.

So if there are about 44 phonemes for the English language, how many visemes
are there? Well, the Disney animators of old used 13 archetypes of mouth positions
when they created animations. (You don’t have to implement these 13 visemes for
each character you create, however; you can get away with less [Lander00]). Figure
10.2 shows a template of visemes you can use when creating your own characters:

Chapter 10 Making Characters Talk 221

Okay, it is about time I show you some code in this chapter. Here’s the class I’ll
use to describe a viseme keyframe:

class Viseme

{

public:

VISEME();

VISEME(int target, float amount, float time);

public:

int m_morphTarget;

float m_blendAmount;

float m_time;

};

This class works as a simple keyframe where the morph target (m_morphTarget)
will be blended into at time m_time. The m_blendAmount variable determines the
final blend amount for this keyframe. I have also added the two following functions
to the FaceController class to handle speech lip-syncing:

222 Character Animation with Direct3D

FIGURE 10.2
Viseme templates.

void FaceController::Speak(vector<Viseme> &visemes)

{

//Copy visemes to the m_visemes array

m_visemes.clear();

for(int i=0; i<visemes.size(); i++)

m_visemes.push_back(visemes[i]);

//Reset playback variables

m_visemeIndex = 1;

m_speechTime = 0.0f;

}

void FaceController::UpdateSpeech(float deltaTime)

{

m_speechTime += deltaTime;

if(m_visemeIndex > 0 && m_visemeIndex < m_visemes.size())

{

//Get visemes to blend between

VISEME &v1 = m_visemes[m_visemeIndex - 1];

VISEME &v2 = m_visemes[m_visemeIndex];

//Set speech meshes

m_speechIndices[0] = v1.m_morphTarget;

m_speechIndices[1] = v2.m_morphTarget;

//Set blend amounts

float timeBetweenVisemes = v2.m_time - v1.m_time;

float p = (m_speechTime - v1.m_time) / timeBetweenVisemes;

m_morphWeights.z = (1.0f - p) * v1.m_blendAmount;

m_morphWeights.w = p * v2.m_blendAmount;

//Update index

if(m_speechTime >= v2.m_time)

m_visemeIndex++;

}

else

{

m_morphWeights.z = 0.0f;

m_morphWeights.w = 0.0f;

}

}

Chapter 10 Making Characters Talk 223

The Speak() function is the command to a face controller that will start the
playback/lip-syncing of a character. The UpdateSpeech() function is called each
frame the blending of the viseme key frames is done in this function.

To keep this book focused, I won’t go into details on how to play sound or speech.
There are several libraries available online, not to mention the DirectSound API,
DirectShow API, etc. But since I do need to play sounds, I’ll use the simple
PlaySound() function available in the winmm.lib. So to play a sound with this
function you simply call it like this:

//Stop old sound

PlaySound(0, 0, 0);

//Play sound

PlaySound("somefile.wav", NULL, SND_FILENAME | SND_ASYNC);

However, I recommend that you use something other than this in real-time appli-
cations.

So to make the face of the character “mime” words, you need to create an
array of viseme keyframes and call the Speak() function of the FaceController
class like this:

//Create viseme queue

vector<Viseme> visemes;

visemes.push_back(Viseme(VISEME::O, 0.0f, 0.0f));

visemes.push_back(Viseme(VISEME::R, 1.0f, 0.25f));

...

visemes.push_back(Viseme(VISEME::SZ, 0.0f, 2.5f));

m_pFaceController->Speak(visemes);

In this example code I’ve used an enumeration (VISEME) to contain the indices
of the different morph targets. These indices are then used when initializing the
Viseme objects. That’s it! You’ll find all this stuff in action in Example 10.1.

224 Character Animation with Direct3D

BASICS OF SPEECH ANALYSIS

These days, games have thousands of voice lines. Doing manual lip-syncing for
all these lines is downright uneconomical (not to mention tedious). Therefore most
commercial game engines use systematic lip-syncing. These game engines employ
offline preprocessing algorithms where the phonemes are extracted and linked to the
various voice lines in a game. Often these algorithms take both the text of the line being
read as well as the sound data to create the highest-quality lip-syncing possible.

So how can you analyze speech algorithmically? Well, when you speak you use
certain frequencies of sound for certain phonemes. By classifying which combina-
tion of frequencies goes with each of the 44 different phonemes, you can make a

Chapter 10 Making Characters Talk 225

EXAMPLE 10.1

This example was created by first recording a voice line. After that I manu-
ally wrote down the phonemes in the line. Then I opened the voice line in

a sound editor where I got the timing of the different phonemes. With this informa-
tion it was a simple thing to create the viseme keyframes and have the character
seemingly speak the line.

226 Character Animation with Direct3D

fairly educated guess as to which phoneme is being spoken. Figure 10.3 shows the
waveform from the previous speech sample together with the spectrograph of the
same sample (a spectrograph shows the frequency and amplitude of a signal).

As you can see in Figure 10.3, distinct patterns can be seen in the spectrograph
as the phonemes are spoken. As a side note, speech-to-text applications take this
analysis one step further and use Hidden Markov Models (HMM) to figure out
which exact word is being spoken. Luckily we don’t need to dive that deep in order
to create reasonable lip-syncing.

If you are interested in analyzing speech and making your own phoneme extractor,
you’ll need to run the speech data through a Fourier Transform. This will give you
the data in the frequency domain, which in turn will help you build the spectrogram
and help you classify the phonemes. Check out www.fftw.org for a Fast-Fourier-
Transform library in C.

Analyzing speech and extracting phonemes is a rather CPU-intense process
and is therefore pre-processed in all major game engines. However, some games in
the past have used a real-time lip-syncing system based simply on the current am-
plitude of the speech [Simpson04]. With this approach the voice lines are evaluated
just a little ahead of the playback position to determine which mouth shape to use.
In the coming sections I will look at a similar system and get you started on ana-
lyzing raw speech data.

FIGURE 10.3
Waveform and spectrograph of a voice sample.

www.fftw.org

SOUND DATA

Before you can start to analyze voice data, I’ll need to go off on a tangent and cover
how to actually load some raw sound data. No matter which type of sound format
you will actually use, once the sound data has been decompressed and decoded, the
raw sound data will be the same across all sound formats. In this chapter I’ll just use
standard uncompressed WAVE files for storing sound data. However, for projects
requiring large amounts of voice lines, using uncompressed sound is of course out
of the question.

Two open-source compression schemes available for free are OGG and SPEEX,
which you can find online:

http://www.vorbis.com/
http://www.speex.org/

OGG is aimed mainly at music compression and streaming, but it is easy enough
to get up and running. SPEEX, on the other hand, focuses only on speech com-
pression.

THE WAVE FORMAT

There are several good tutorials on the Web explaining how to load and interpret
WAVE (.wav) files, so I won’t dig too deep into it here. The WAVE format builds on
the Resource Interchange File Format (RIFF). RIFF files store data in chunks, where
the start of each chunk is marked with a 4-byte ID describing what type of chunk it
is, as well as 4 bytes containing the size of the chunk (a long). The WAVE file con-
tains all information about the sound—number of channels, sampling rate, number
of bits per sample, and much more. Figure 10.4 shows how a WAVE file is organized.

There are many other different types of chunks that can be stored in a WAVE
file. Only the Format and Data chunks are mandatory. Table 10.2 shows the differ-
ent fields of the Format chunk and their possible values.

Chapter 10 Making Characters Talk 227

http://www.vorbis.com/
http://www.speex.org/

228 Character Animation with Direct3D

FIGURE 10.4
WAVE file format.

TABLE 10.2 THE WAVE FORMAT CHUNK

Field Type Description

Audio Format Short Type of audio data. A value of 1 indicates PCM data; other
values mean that there’s some form of compression.

Num Channels Short Number of channels, 1 = mono, 2 = stereo

Sample Rate Long Number of samples per second. For example, CD quality
uses 44,100 samples per second (Hz).

Byte Rate Long Number of bytes used per second.

Block Align Short Number of bytes per sample (including multiple channels).

Bits/Sample Short 8 = 8 bits per sample, 16 = 16 bits per sample.

For a full description of the WAVE file format and the different chunks avail-
able, check out http://www.sonicspot.com/guide/wavefiles.html.

I’ll assume that the data stored in the “data” chunk is uncompressed sound data
in the Pulse-Code Modulation (PCM) format. This basically means that the data is
stored as a long array of values where each value is the amplitude of the sound at a
specific point in time. The quickest and dirtiest way to access the data is to simply
open a stream from the sound file and start reading from byte 44 (where the data
field starts). Although this will work if you know the sound specifications, it isn’t
really recommended. The WaveFile class I’ll present here will do minimal error
checking before reading and storing the actual sound data:

class WaveFile

{

public:

WaveFile();

~WaveFile();

void Load(string filename);

short GetMaxAmplitude();

short GetAverageAmplitude(float startTime, float endTime);

float GetLength();

public:

long m_numSamples;

long m_sampleRate;

short m_bitsPerSample;

short m_numChannels;

short *m_pData;

};

The Load() function of the WaveFile class loads the sound data and performs
some minimal error checking. For example, I assume that only uncompressed, 16-
bit WAVE files will be used. You can easily expand this class yourself if you need to
load 8-bit files, etc. If a WaveFile object is created successfully and a WAVE file is
loaded, the raw data can be accessed through the m_pData pointer. The following
code shows the code for the Load() function of the WaveFile class:

void WaveFile::Load(string filename)

{

ifstream in(filename.c_str(), ios::binary);

//RIFF

char ID[4];

in.read(ID, 4);

Chapter 10 Making Characters Talk 229

http://www.sonicspot.com/guide/wavefiles.html

if(ID[0] != 'R' || ID[1] != 'I' || ID[2] != 'F' || ID[3] != 'F')

{

//Error: 4 first bytes should say 'RIFF'

}

//RIFF Chunk Size

long fileSize = 0;

in.read((char*)&fileSize, sizeof(long));

//The actual size of the file is 8 bytes larger

fileSize += 8;

//WAVE ID

in.read(ID, 4);

if(ID[0] != 'W' || ID[1] != 'A' || ID[2] != 'V' || ID[3] != 'E')

{

//Error: ID should be 'WAVE'

}

//Format Chunk ID

in.read(ID, 4);

if(ID[0] != 'f' || ID[1] != 'm' || ID[2] != 't' || ID[3] != ' ')

{

//Error: ID should be 'fmt '

}

//Format Chunk Size

long formatSize = 0;

in.read((char*)&formatSize, sizeof(long));

//Audio Format

short audioFormat = 0;

in.read((char*)&audioFormat, sizeof(short));

if(audioFormat != 1)

{

//Error: Not uncompressed data!

}

//Num Channels

in.read((char*)&m_numChannels, sizeof(short));

//Sample Rate

in.read((char*)&m_sampleRate, sizeof(long));

230 Character Animation with Direct3D

//Byte Rate

long byteRate = 0;

in.read((char*)&byteRate, sizeof(long));

//Block Align

short blockAlign = 0;

in.read((char*)&blockAlign, sizeof(short));

//Bits Per Sample

in.read((char*)&m_bitsPerSample, sizeof(short));

if(m_bitsPerSample != 16)

{

//Error: This class only supports 16-bit sound data

}

//Data Chunk ID

in.read(ID, 4);

if(ID[0] != 'd' || ID[1] != 'a' || ID[2] != 't' || ID[3] != 'a')

{

//Error: ID should be 'data'

}

//Data Chunk Size

long dataSize;

in.read((char*)&dataSize, sizeof(long));

m_numSamples = dataSize / 2; //<-- Divide by 2 (short has 2 bytes)

//Read the Raw Data

m_pData = new short[m_numSamples];

in.read((char*)m_pData, dataSize);

in.close();

}

At the end of this function the raw sound data will be stored at the m_pData
pointer as a long array of short values. The value of a single sample ranges from
-32768 to 32767, where a value of 0 marks silence. The other functions of this
class I will cover later as we do our amplitude-based lip-syncing system.

Chapter 10 Making Characters Talk 231

AUTOMATIC LIP-SYNCING

In the previous section you learned how to load a simple WAVE file and how to ac-
cess the raw PCM data. In this section I will create a simplified lip-syncing system
by analyzing the amplitude of a voice sample [Simpson04]. The main point of this
approach is not to create perfect lip-syncing but rather to make the lips move in a
synchronized fashion as the voice line plays. So, for instance, when the voice sam-
ple is silent, the mouth should be closed. The following function returns the aver-
age amplitude of a voice sample between two points in time:

short WAVE::GetAverageAmplitude(float startTime, float endTime)

{

if(m_pData == NULL)

return 0;

//Calculate start & end sample

int startSample = (int)(m_sampleRate * startTime) * m_numChannels;

int endSample = (int)(m_sampleRate * endTime) * m_numChannels;

if(startSample >= endSample)

return 0;

//Calculate the average amplitude between start and end sample

float c = 1.0f / (float)(endSample - startSample);

float avg = 0.0f;

for(int i=startSample; i<endSample && i<m_numSamples; i++)

{

avg += abs(m_pData[i]) * c;

}

avg = min(avg, (float)(SHRT_MAX - 1));

avg = max(avg, (float)(SHRT_MIN + 1));

return (short)avg;

}

With this function you can easily create an array of visemes by matching a certain
amplitude range to a certain viseme. This is done in the FaceController::Speak()
function:

232 Character Animation with Direct3D

void FaceController::Speak(WAVE &wave)

{

m_visemes.clear();

//Calculate which visemes to use from the WAVE file data

float soundLength = wave.GetLength();

//Since the wave data oscillates around zero,

//bring the max amplitude down to 30% for better results

float maxAmp = wave.GetMaxAmplitude() * 0.3f;

for(float i=0.0f; i<soundLength; i += 0.1f)

{

short amp = wave.GetAverageAmplitude(i, i + 0.1f);

float p = min(amp / maxAmp, 1.0f);

if(p < 0.2f)

{

m_visemes.push_back(VISEME(0, 0.0f, i));

}

else if(p < 0.4f)

{

float prc = max((p - 0.2) / 0.2f, 0.3f);

m_visemes.push_back(VISEME(3, prc, i));

}

else if(p < 0.7f)

{

float prc = max((p - 0.4f) / 0.3f, 0.3f);

m_visemes.push_back(VISEME(1, prc, i));

}

else

{

float prc = max((p - 0.7f) / 0.3f, 0.3f);

m_visemes.push_back(VISEME(4, prc, i));

}

}

m_visemeIndex = 1;

m_speechTime = 0.0f;

}

Chapter 10 Making Characters Talk 233

Here I create a viseme for every 100 milliseconds, but you can try out different
amounts of visemes per second. Of course the result will be a bit worse comparing
this method to the previous one where the visemes were created manually, but the
major upside with this approach is that you can quickly get “decent” looking lip-
syncing with very little effort and no pre-processing.

CONCLUSIONS

This chapter covered the basics of lip-syncing and how to make a character “speak”
a voice line. This is still a hot research topic that is constantly being improved upon.
However, for games using thousands of voice lines, the focus is almost always on
making the process as cheap and pain free as possible as long as the results are

234 Character Animation with Direct3D

EXAMPLE 10.2

This example shows a simple lip-syncing system based on the amplitude of
a voice sample. Play around with what visemes are assigned to which am-

plitude range, the number of visemes per second, and perhaps the blending amounts.
See if you can improve on this example and make the lip-syncing look better.

“good enough.” In this chapter I showed one way of doing the lip-synching auto-
matically using only the amplitude of a voice sample. Granted, this wouldn’t be
considered high enough quality to work in a next-generation project, but at least it
serves as a starting point for you to get started with analyzing voice samples. If you
want to improve this system, I suggest you look into analyzing the voice data with
Fourier Transforms and try to classify the different phonemes.

FURTHER READING

[Lander00] Lander, Jeff, “Read My Lips: Facial Animation Techniques.” Available
online at http://www.gamasutra.com/view/feature/3179/read_my_lips_facial_
animation_.php, 2000.

[Simpson04] Simpson, Jake, “A Simple Real-Time Lip-Synching System.” Game
Programming Gems 4, Charles River Media, 2004.

[Lander00b] Lander, Jeff, “Flex Your Facial Muscles.” Available online at
http://www.gamasutra.com/features/20000414/lander_pfv.htm, 2000.

Chapter 10 Making Characters Talk 235

http://www.gamasutra.com/view/feature/3179/read_my_lips_facial_animation_.php
http://www.gamasutra.com/view/feature/3179/read_my_lips_facial_animation_.php
http://www.gamasutra.com/features/20000414/lander_pfv.htm

This page intentionally left blank

237

Inverse Kinematics11

This chapter will introduce you to the concept of inverse kinematics (IK). The goal
is to calculate the angles of a chain of bones so that the end bone reaches a certain
point in space. IK was first used in the field of robotics to control robotic arms, etc.
There are plenty of articles about IK in this field if you give it a search on Google.
In this chapter, however, I’ll show you how to put this idea to work on your game
character. IK can be used for many different things in games, such as placing hands
on items in the game world, matching the feet of a character to the terrain, and
much more.

So why should you bother implementing inverse kinematics? Well, without it
your character animations will look detached from the world, or “canned.” IK can
be used together with your keyframed animations. An example of this is a character
opening a door. You can use IK to “tweak” the door-opening animation so that the
hand of the character always connects with the door handle even though the handle
may be placed in different heights on different doors.

This chapter presents two useful cases of IK. The first is a simple “Look-At”
example, and the second is a Two-Joint “Reach” example. In short, this chapter
covers the following:

Inverse kinematics overview
“Look-At” IK
Two-Joint “Reach” IK

A big thanks goes out to Henrik Enqvist at Remedy Entertainment for the sample
code of the IK examples covered in this chapter.

INTRODUCTION TO INVERSE KINEMATICS

Before I cover inverse kinematics I’ll first cover the concept of forward kinematics
(FK). Forward kinematics is something you’ve come across many times throughout
this book already. Forward kinematics is the problem of solving the end point,
given a chain of bones and their angles. An example of forward kinematics can be
seen in Figure 11.1.

238 Character Animation with Direct3D

FIGURE 11.1
Forward kinematics: Calculating the target, when knowing the origin, the bones, and
their angles.

The linked bones are also known as a kinematics chain, where the change in a
bone’s orientation also affects the children of that bone (something with which
you should already be familiar after implementing a skinned character using bone
hierarchies).

Forward kinematics come in very handy when trying to link something to a
certain bone of a character. For example, imagine a medieval first-person shooter
(FPS) in which you’re firing a bow. A cool effect would be to have the arrows
“stick” to the enemy character if you have gotten a clean hit. The first problem you
would need to solve is to determine which bone of the character was hit. A simple
way to do this is to check which polygon of the character mesh was pierced and
then see which bone(s) govern the three vertices of this polygon. After this you
would need to calculate the position (and orientation) of the arrow in the bone
space of the bone you’re about to link the arrow to. Next you would update the
position of the arrow each frame using forward kinematics. Alternatively, the bone
may have its own bounding volume, and then you can just check if the arrow
intersects any of these instead.

With forward kinematics you don’t know the end location of the last bone in the
kinematics chain. With inverse kinematics, on the other hand, you do know the end
location (or target) that you want the kinematics chain to reach. What you don’t
know are the different angles (and orientations) of the joints (a and b in Figure
11.1). Solving the forward kinematics problem is relatively easy, but coming up with
an efficient (and general) solution for the inverse kinematics problems is much
harder (see Figure 11.2).

In Figure 11.2 you can see a 2D example of inverse kinematics. With inverse
as opposed to forward kinematics, there is often more than one solution to a
problem. In Figure 11.2, three example solutions to the same problem are shown
(although there are more). Imagine then how many more solutions there are in
3D! Luckily when it comes to game programming, cutting corners is allowed
(and often necessary). By reducing and adding more information about the

Chapter 11 Inverse Kinematics 239

FIGURE 11.2
Example of inverse kinematics.

problem, you can go from this near-impossible problem to a quite manageable
one. This chapter will cover some approaches to solving the problem of inverse
kinematics for characters.

SOLVING THE IK PROBLEM

Solutions to IK problems come in two flavors: analytical and numerical. With
analytical solutions, you have an equation that can be solved directly. This is the
fast and preferred way of solving IK problems. However, with several links in the
IK chain, the analytical solution is rarely an option. Numerical solutions attempt
to find approximate (but somewhat accurate) solutions to the problem. The
approximations are usually done by either iterating over the result, which finally
converges toward the solution, or dividing the problem into smaller, more
manageable chunks and solving those separately. Numerical IK solutions also tend
to be more expensive compared to their analytical counterpart.

Two popular numerical methods for solving IK problems are cyclic coordinate
decent (CCD) and the Jacobian matrix. Cyclic coordinate decent simplifies the
problem by looking at each link separately. CCD starts at the leaf node and moves
up the chain, trying to minimize the error between the end point and the goal.
This approach can require a fair amount of passes over the IK chain before the
result is acceptable. CCD also suffers from the problem of sometimes creating
unnatural-looking solutions. For example, since the first link to be considered is

the leaf (e.g., the wrist or ankle), it will first try to minimize the error on this link,
which might result in really twisted hands or feet.

The Jacobian matrix, on the other hand, describes the entire IK chain. Each
column in the Jacobian matrix describes the change of the end point (approxi-
mated linearly) as one of the links is rotated. Solving the Jacobian matrix is slow
but produces better-looking results (in general) than the cyclic coordinate decent
solution does. Since the Jacobian method is rather heavy on math, I’ll leave it out
of this book, but for those interested, simply search for “The Jacobian IK” in your
favorite search engine.

LOOK-AT INVERSE KINEMATICS

To start you off with IK calculations, I’ll start with the simplest example: having only
one bone orientation to calculate. Figure 11.3 shows an example of Look-At IK.

240 Character Animation with Direct3D

In Figure 11.3 the character is facing the target (black ball) no matter where the
ball is compared to the character. Since the target might be moving dynamically in
the game, there is no way to make a keyframed animation to cover all possible “view
angles.” In this case, the IK calculation is done on the head bone and can easily be
blended together with normal keyframed animations.

One more thing you need to consider is, of course, what should happen when
the Look-At target is behind the character or outside the character’s field of view
(FoV). The easiest solution is just to cap the head rotation to a certain view cone. A
more advanced approach would be to play an animation that turns the character
around to face the target and then use the Look-At IK to face the target. In either
case you need to define the character’s field of view. Figure 11.4 shows an example
FoV of 120 degrees.

Chapter 11 Inverse Kinematics 241

FIGURE 11.3
Look-At Inverse Kinematics.

FIGURE 11.4
Limiting the field of view (FoV).

So what I’ll try to achieve in the next example is a character that can look at a
certain target in its field of view (i.e., turn the character’s head bone dynamically).
To do this I’ll use the InverseKinematics class. This class encapsulates all the IK
calculations, the updating of the bone matrices, etc:

class InverseKinematics

{

public:

InverseKinematics(SkinnedMesh* pSkinnedMesh);

void UpdateHeadIK();

void ApplyLookAtIK(D3DXVECTOR3 &lookAtTarget, float maxAngle);

private:

SkinnedMesh *m_pSkinnedMesh;

Bone* m_pHeadBone;

D3DXVECTOR3 m_headForward;

};

The constructor of the InverseKinematics class takes a pointer to the skinned
mesh you want to “operate on.” The constructor finds the head bone and does the
necessary initializations for the IK class. The magic happens in the ApplyLookAtIK()
function. As you can see, this function takes a Look-At target (in world space) and
a max angle defining the view cone (FoV) of the character. Here’s the initialization
code of the InverseKinematics class as found in the class constructor:

InverseKinematics::InverseKinematics(SkinnedMesh* pSkinnedMesh)

{

m_pSkinnedMesh = pSkinnedMesh;

// Find the head bone

m_pHeadBone = (Bone*)m_pSkinnedMesh->GetBone("Head");

// Exit if there is no head bone

if(m_pHeadBone != NULL)

{

// Calculate the local forward vector for the head bone

// Remove translation from head matrix

D3DXMATRIX headMatrix;

headMatrix = m_pHeadBone->CombinedTransformationMatrix;

headMatrix._41 = 0.0f;

headMatrix._42 = 0.0f;

242 Character Animation with Direct3D

headMatrix._43 = 0.0f;

headMatrix._44 = 1.0f;

D3DXMATRIX toHeadSpace;

if(D3DXMatrixInverse(&toHeadSpace, NULL, &headMatrix) == NULL)

return;

// The model is looking toward -z in the content

D3DXVECTOR4 vec;

D3DXVec3Transform(&vec, &D3DXVECTOR3(0, 0, -1), &toHeadSpace);

m_headForward = D3DXVECTOR3(vec.x, vec.y, vec.z);

}

}

First I locate the head bone (named Head in the example mesh). Next I remove
the transformation from the combined transformation matrix by setting element
41, 42, 43, and 44 in the matrix to 0, 0, 0, and 1 respectively. I then calculate the in-
verse of the resulting matrix. This lets you calculate the head forward vector (in the
local head bone space) shown in Figure 11.5.

Chapter 11 Inverse Kinematics 243

FIGURE 11.5
The forward vector of the head bone.

The forward vector of the head bone is calculated when the character is in the
reference pose and the character is facing in the negative Z direction. You’ll need
this vector later on when you update the Look-At IK. Next is the ApplyLookAtIK()
function:

void InverseKinematics::ApplyLookAtIK(D3DXVECTOR3 &lookAtTarget,

float maxAngle)

{

// Start by transforming to local space

D3DXMATRIX mtxToLocal;

D3DXMatrixInverse(&mtxToLocal, NULL,

&m_pHeadBone->CombinedTransformationMatrix);

D3DXVECTOR3 localLookAt;

D3DXVec3TransformCoord(&localLookAt, &lookAtTarget, &mtxToLocal);

// Normalize local look at target

D3DXVec3Normalize(&localLookAt, &localLookAt);

// Get rotation axis and angle

D3DXVECTOR3 localRotationAxis;

D3DXVec3Cross(&localRotationAxis, &m_headForward, &localLookAt);

D3DXVec3Normalize(&localRotationAxis, &localRotationAxis);

float localAngle = acosf(D3DXVec3Dot(&m_headForward,

&localLookAt));

// Limit angle

localAngle = min(localAngle, maxAngle);

// Apply the transformation to the bone

D3DXMATRIX rotation;

D3DXMatrixRotationAxis(&rotation, &localRotationAxis, localAngle);

m_pHeadBone->CombinedTransformationMatrix = rotation *

m_pHeadBone->CombinedTransformationMatrix;

// Update changes to child bones

if(m_pHeadBone->pFrameFirstChild)

{

m_pSkinnedMesh->UpdateMatrices(

(Bone*)m_pHeadBone->pFrameFirstChild,

&m_pHeadBone->CombinedTransformationMatrix);

}

}

244 Character Animation with Direct3D

This function uses the shortest arc algorithm [Melax00], to calculate the angle
to rotate the head bone so that it faces the Look-At target. Figure 11.6 shows the
shortest arc algorithm in action.

The head forward vector is calculated in the initialization of the Inverse-
Kinematics class. The target you already know; all you need to do is calculate the
normalized vector to the target in bone space (since the head forward vector is in
bone space). Calculate the cross product of these two vectors (head forward and
target vector) and use that as the rotation axis. Then the angle is calculated and
cap’d to the max rotation angle and used to create the new rotation matrix (this is
the matrix that will turn the head to face the target). Finally update the combined
transformation matrix with the new rotation matrix and be sure to update any
child bones of the head bone as well using the SkinnedMesh::UpdateMatrices()
function.

Chapter 11 Inverse Kinematics 245

FIGURE 11.6
The shortest arc algorithm, with X being the rotation
angle you need to calculate.

246 Character Animation with Direct3D

TWO-JOINT INVERSE KINEMATICS

Now I’ll show you how to attack the Two-Joint “Reach” IK problem. To solve this
problem easier, you must take the information you know about people in general
and put it to good use. For example, in games the elbow joint is treated like a hinge
joint with only one degree of freedom (1-DoF), while the shoulder joint is treated
like a ball joint (3-DoF).

The fact that you treat the elbow (or knee) joint as a hinge makes this a whole
lot simpler. You know that the arm can be fully extended, completely bent, or
something in between. So, in other words, you know that the angle between the
upper and lower arm has to be between 0 and 180 degrees. This in turn makes it
pretty easy for you to calculate the reach of an arm when you know the length of the
upper and lower arm. Consider Figure 11.7, for example.

EXAMPLE 11.1

This is the first inverse kinematics example featuring a simple Look-At
example. The soldier will look at the mouse cursor just like in the earlier

examples with the eyeballs, except in this example the head bone is manipulated
to turn the whole head to face the cursor. As you can see in this example, the IK
are applied on top of normal keyframed animation.

The black line in Figure 11.7 defines all the points that this arm can reach,
assuming that the elbow joint can bend from 0 to 180 degrees. Let’s say that
you’re trying to make your character reach a certain point with his arm. Your
first task is to figure out the angle of the elbow joint given the distance to the
target. Using the Law of Cosines, this becomes a pretty straightforward task,
since you know the length of all sides of the triangle. The formula for the Law of
Cosines is:

C2 = A2 + B2 – 2ABcos(x)

Trivia: You might recognize part of the Law of Cosines as the Pythagorean Theorem.
Actually, the Pythagorean Theorem is a special case of the Law of Cosines where the
angle x is 90 degrees. Since the cosine for 90 degrees is zero, the term -2ABcos(x) can
be removed.

Chapter 11 Inverse Kinematics 247

FIGURE 11.7
Within an arm’s reach?

Figure 11.7 shows the Law of Cosines applied to the elbow problem.
In Figure 11.8, C is known because it is the length from the shoulder to the IK

target. A and B are also known because they are simply the length of the upper and
lower arm. So to solve the angle x, you just need to reorganize the Law of Cosines
as follows:

x = acos A2 + B2 – C2� 2AB �

First you have to bend the elbow to the angle that gives you the right “length.”
Then you just rotate the shoulder (a ball joint, remember?) using the same simple
Look-At IK approach covered in the previous example. The ApplyArmIK() function
has been added to the InverseKinematics class to do all this:

void InverseKinematics::ApplyArmIK(D3DXVECTOR3 &hingeAxis,

D3DXVECTOR3 &target)

{

// Set up some vectors and positions

D3DXVECTOR3 startPosition = D3DXVECTOR3(

m_pShoulderBone->CombinedTransformationMatrix._41,

m_pShoulderBone->CombinedTransformationMatrix._42,

m_pShoulderBone->CombinedTransformationMatrix._43);

D3DXVECTOR3 jointPosition = D3DXVECTOR3(

m_pElbowBone->CombinedTransformationMatrix._41,

m_pElbowBone->CombinedTransformationMatrix._42,

m_pElbowBone->CombinedTransformationMatrix._43);

248 Character Animation with Direct3D

FIGURE 11.8
The Law of Cosines.

D3DXVECTOR3 endPosition = D3DXVECTOR3(

m_pHandBone->CombinedTransformationMatrix._41,

m_pHandBone->CombinedTransformationMatrix._42,

m_pHandBone->CombinedTransformationMatrix._43);

D3DXVECTOR3 startToTarget = target - startPosition;

D3DXVECTOR3 startToJoint = jointPosition - startPosition;

D3DXVECTOR3 jointToEnd = endPosition - jointPosition;

float distStartToTarget = D3DXVec3Length(&startToTarget);

float distStartToJoint = D3DXVec3Length(&startToJoint);

float distJointToEnd = D3DXVec3Length(&jointToEnd);

// Calculate joint bone rotation

// Calculate current angle and wanted angle

float wantedJointAngle = 0.0f;

if(distStartToTarget >= distStartToJoint + distJointToEnd)

{

// Target out of reach

wantedJointAngle = D3DXToRadian(180.0f);

}

else

{

//Calculate wanted joint angle (using the Law of Cosines)

float cosAngle = (distStartToJoint * distStartToJoint +

distJointToEnd * distJointToEnd –

distStartToTarget * distStartToTarget) /

(2.0f * distStartToJoint * distJointToEnd);

wantedJointAngle = acosf(cosAngle);

}

//Normalize vectors

D3DXVECTOR3 nmlStartToJoint = startToJoint;

D3DXVECTOR3 nmlJointToEnd = jointToEnd;

D3DXVec3Normalize(&nmlStartToJoint, &nmlStartToJoint);

D3DXVec3Normalize(&nmlJointToEnd, &nmlJointToEnd);

//Calculate the current joint angle

float currentJointAngle =

acosf(D3DXVec3Dot(&(-nmlStartToJoint), &nmlJointToEnd));

Chapter 11 Inverse Kinematics 249

//Calculate rotation matrix

float diffJointAngle = wantedJointAngle - currentJointAngle;

D3DXMATRIX rotation;

D3DXMatrixRotationAxis(&rotation, &hingeAxis, diffJointAngle);

//Apply elbow transformation

m_pElbowBone->TransformationMatrix = rotation *

m_pElbowBone->TransformationMatrix;

//Now the elbow “bending” has been done. Next you just

//need to rotate the shoulder using the Look-at IK algorithm

//Calcuate new end position

//Calculate this in world position and transform

//it later to start bones local space

D3DXMATRIX tempMatrix;

tempMatrix = m_pElbowBone->CombinedTransformationMatrix;

tempMatrix._41 = 0.0f;

tempMatrix._42 = 0.0f;

tempMatrix._43 = 0.0f;

tempMatrix._44 = 1.0f;

D3DXVECTOR3 worldHingeAxis;

D3DXVECTOR3 newJointToEnd;

D3DXVec3TransformCoord(&worldHingeAxis, &hingeAxis, &tempMatrix);

D3DXMatrixRotationAxis(&rotation,&worldHingeAxis,diffJointAngle);

D3DXVec3TransformCoord(&newJointToEnd, &jointToEnd, &rotation);

D3DXVECTOR3 newEndPosition;

D3DXVec3Add(&newEndPosition, &newJointToEnd, &jointPosition);

// Calculate start bone rotation

D3DXMATRIX mtxToLocal;

D3DXMatrixInverse(&mtxToLocal, NULL,

&m_pShoulderBone->CombinedTransformationMatrix);

D3DXVECTOR3 localNewEnd; //Current end point

D3DXVECTOR3 localTarget; //IK target in local space

D3DXVec3TransformCoord(&localNewEnd,&newEndPosition,&mtxToLocal);

D3DXVec3TransformCoord(&localTarget, &target, &mtxToLocal);

D3DXVec3Normalize(&localNewEnd, &localNewEnd);

D3DXVec3Normalize(&localTarget, &localTarget);

250 Character Animation with Direct3D

D3DXVECTOR3 localAxis;

D3DXVec3Cross(&localAxis, &localNewEnd, &localTarget);

if(D3DXVec3Length(&localAxis) == 0.0f)

return;

D3DXVec3Normalize(&localAxis, &localAxis);

float localAngle = acosf(D3DXVec3Dot(&localNewEnd, &localTarget));

// Apply the rotation that makes the bone turn

D3DXMatrixRotationAxis(&rotation, &localAxis, localAngle);

m_pShoulderBone->CombinedTransformationMatrix = rotation *

m_pShoulderBone->CombinedTransformationMatrix;

m_pShoulderBone->TransformationMatrix = rotation *

m_pShoulderBone->TransformationMatrix;

// Update matrices of child bones.

if(m_pShoulderBone->pFrameFirstChild)

m_pSkinnedMesh->UpdateMatrices(

(BONE*)m_pShoulderBone->pFrameFirstChild,

&m_pShoulderBone->CombinedTransformationMatrix);

}

There! This humongous piece of code implements the concept of Two-Joint
IK as explained earlier. As you can see in this function we apply any rotation of
the joints both to the transformation matrix and the combined transformation
matrix of the bone. This is because the SkinnedMesh class recalculates the
combined transformation matrix whenever the UpdateMatrices() function is
called. So if you haven’t applied the IK rotation to both matrices it would be lost
when the UpdateMatrices() function is called.

Chapter 11 Inverse Kinematics 251

CONCLUSIONS

This chapter covered the basics of inverse kinematics (IK) and explained that as
a general problem it is quite tough to solve (even though there are quite a few
approaches to doing so). I covered two specific IK applications for character
animation: Look-At and Two-Joint “Reach” IK. The Two-Joint IK can also be
used for placing legs on uneven terrain, making a character reach for a game-
world object, and much more.

You would also need IK to make a character hold an object (such as a staff, for
example) with both hands. This could, of course, be done with normal keyframe
animation as well, but it then often results in one hand not “holding on” perfectly
and sometimes floating through the staff (due to interpolation between keyframes).

252 Character Animation with Direct3D

EXAMPLE 11.2

Example 11.2 has all the code for the Two-Joint IK solution covered in this
section. You move the target point around with the mouse, and the character

will attempt to reach it with one arm. Try to modify this example by limiting the freedom
of the shoulder joint so that the arm can’t move through the rest of the body. Also, see
if you can apply Two-Joint IK to the other limbs (legs and other arm) as well.

Hopefully this chapter served as a good IK primer for you to start implementing
your own “hands-on” characters.

This chapter essentially wraps up the many individual parts of character ani-
mation in this book.

CHAPTER 11 EXERCISES

Add weights to the IK functions enabling you to blend between keyframed
animation and IK animation.
A good next step for you would be to combine a keyframed animation such as
opening a door with IK. As the animation is in the state of holding the door
handle, blend in the Two-Joint IK with the door handle as the IK target.
The soldier is holding the rifle with two hands. Glue the other hand (the one
that is not the parent of the rifle) to it using IK.
Implement IK for the legs and make the character walk on uneven terrain.
Implement aiming for the soldier.

FURTHER READING

[Melax00] Melax, Stan, “The Shortest Arc Quaternion,” Game Programming Gems.
Charles River Media, 2000.

Chapter 11 Inverse Kinematics 253

This page intentionally left blank

255

Wrinkle Maps12

I’ll admit that this chapter is a bit of a tangent and it won’t involve much animation
code. This chapter will cover the fairly recent invention of wrinkle maps. In order
to make your future characters meet the high expectations of the average gamer out
there, you need to know, at the very least, how to create and apply standard normal
maps to your characters. Wrinkle maps take the concept of normal maps one step
further and add wrinkles to your characters as they talk, smile, or frown, etc. Albeit
this is a pretty subtle effect, it still adds that extra little thing missing to make your
character seem more alive.

256 Character Animation with Direct3D

Before you get in contact with the wrinkle maps you need to have a solid
understanding of how the more basic normal mapping technique works. Even
though normal mapping is a very common technique in today’s games, it is
surprisingly hard to find good (i.e., approachable) tutorials and information about
this online (again, I’m talking about the programming side of normal maps, there’s
plenty of resources about the art side of this topic). I’m hoping this chapter will fill
a little bit of this gap.

Normal mapping is a bump mapping technique—in other words, it can be
used for making flat surfaces appear “bumpy.” Several programs make use of the
term bump map, which in most cases takes the form of a grayscale height map. As
an object is rendered in one of these programs, a pixel is sampled from the height
map (using the UV coordinates of the object) and used to offset the surface normal.
This in turn results in a variation of the amount of light this pixel receives. Normal
mapping is just one of the possible ways of doing this in real time (and is also
currently the de facto standard used in the games industry). Toward the end of the
chapter I’ll also show you how to add specular lighting to your lighting calculations
(something that again adds a lot of realism to the end result).

In this chapter you will learn the basics of normal mapping and how to implement
the more advanced wrinkle maps:

Introduction to normal maps
How to create normal maps
How to convert your geometry to accommodate normal mapping
The real-time shader code needed for rendering
Specular lighting
Wrinkle maps

INTRODUCTION TO NORMAL MAPPING

So far in the examples, the Soldier character has been lit by a single light. The lighting
calculation has thus far been carried out in the vertex shader, which is commonly
known as vertex lighting. Normal mapping, on the other hand, is a form of pixel
lighting, where the lighting calculation is done on a pixel-by-pixel level instead of the
coarser vertex level.

How much the light affects a single vertex on the character (how lit it is) has
been determined previously by the vertex normal. Quite simply, if the normal faces
the light source, the vertex is brightly lit; otherwise it is dark. On a triangle level, this

Chapter 12 Wrinkle Maps 257

means each triangle is affected by three vertices and their normals. This also means
that for large triangles there’s a lot of surface that shares relatively little lighting
information. Figure 12.1 demonstrates the problem with vertex-based lighting:

FIGURE 12.1
The problem with vertex-based lighting.

258 Character Animation with Direct3D

As you can see in Figure 12.1, the concept of vertex lighting can become a
problem in areas where triangles are sparse. As the light moves over the triangle, it
becomes apparent what the downside of vertex-based lighting is. In the middle
image the light is straight above the triangle, but since none of the triangle’s vertices
are lit by the light, the entire triangle is rendered as dark, or unlit. One common
way to fight this problem is, of course, to add more triangles and subdivide areas
that could be otherwise be modeled using fewer triangles.

People still use vertex lighting wherever they can get away with it. This is because
any given lighting scheme usually runs faster in a vertex shader compared to a pixel
shader, since you usually deal with fewer vertices than you do pixels. (The exception
of this rule is, of course, when objects are far away from the camera, in which
case some form of level of detail (LOD) scheme is used.) So in the case of character
rendering, when you increase the complexity (add more triangles) to increase the
lighting accuracy, you’re also getting the overhead of skinning calculations
performed on each vertex, etc.

So to increase the complexity of a character without adding more triangles, you
must perform the lighting calculations on a pixel level rather than a vertex level.
This is where the normal maps come into the picture.

WHAT ARE NORMAL MAPS?

The clue is in the name. A normal map stores a two-dimensional lookup table (or
map) of normals. In practice this takes the form of a texture, which in today’s shader
technology can be uploaded and used in real time by the GPU. The technique we use
today in real-time applications, such as games, were first introduced in 1998 by
Cignoni et al. in the paper “A general method for recovering attribute values on sim-
plified meshes.” This was a method of making a low-polygon version look similar to
a high-polygon version of the same object.

It’s quite easy to understand the concept of a height map that is grayscale, where
white (255) means a “high place,” and black (0) means a “low place.” Height maps
have one channel to encode this information. Normal maps, on the other hand, have
three channels (R, G, and B) that encode the X, Y, and Z value of a normal. This
means that to get the normal at a certain pixel, we can just sample the RGB values
from the normal map, transform it to X, Y, and Z, and then perform the lighting
calculation based on this sampled normal instead of the normals from the vertices.

Generally speaking, there are two types of normal maps. Either a normal map
is encoded in object space or in tangent space. If the normal map stores normals
encoded in object space, it means that the normals are facing the direction that
they do in the game world. If the normals are stored in tangent space, the normals
are stored relative to the surface normal of the object that they describe. Figure
12.2 attempts to show this somewhat fuzzy concept.

Chapter 12 Wrinkle Maps 259

This picture is not really mathematically correct since it would need two channels
for the normals (X and Y). Instead, I’ve tried to illustrate the point using only
grayscale, which I’m afraid messes up the point a bit. I recommend that you do an
image search on Google for an “object-space normal map” and a “tangent-space
normal map” to see the real difference. The rainbow-colored one will be the object-
space normal map, whereas the mostly purplish one will be your more common
tangent-space normal map.

As Figure 12.2 hopefully conveys, you should be able to tell the fundamental
difference between object- and tangent-space normal maps. The gray box marked
“Object” shows the geometry to which we are about to apply the normal map. The
wavy dotted line shows the “complex” geometry, or the normals, we want to apply
to the normal map.

Since the tangent-space normal map is calculated as an offset of the surface
normal, it remains largely uniform in color (depicted in the image as gray), where

FIGURE 12.2
An object-space normal map compared with a tangent-space normal map.

260 Character Animation with Direct3D

the object-space normal map uses the entire range of colors (from white to black in
this example). Figure 12.3 shows a real comparison of the appearances of a normal
map encoded in object space and a normal map encoded in tangent space.

Even though Figure 12.3 is in black and white, you should be able to see the differ-
ence in the two pictures. However, you’ll also find these two normal maps in full color
on the accompanying CD-ROM in the Resources folder of Example 12.1.

So what are the differences, you may ask, between these two ways of encoding
normal maps, except the fact that they look different? Well, actually the differences
are quite significant. Object-space normal maps have the world transformation
baked in to the normal map, which means that the pixel shader, in some cases, can
skip a few matrix transformations. An example of when it can be a good idea to use
object-space normal maps is when you generate the normal maps yourself on-the-
fly for static geometry. Then, you might as well bake in the final transformation of
the normal in the texture since you know this won’t change. The major disadvantage
of object-space normal maps is that they are tied to the geometry, which means you
can’t reuse the normal map over tiled surfaces. Imagine, for example, that you have
a brick wall with a tiled diffuse texture. You wouldn’t be able to tile this object-space
normal map over the wall without getting lighting artifacts. Luckily, tangent-space
normal maps don’t have this restriction, because with tangent-space normal maps,
the final normal is calculated on-the-fly (instead of at the normal map creation time

FIGURE 12.3
Real object space vs. tangent space.

Chapter 12 Wrinkle Maps 261

as is the case with object-space normal maps). So with characters that will both
move around in the world and deform (due to skinning or morphing), it becomes
clear that tangent-space normal maps are the way to go. So for the rest of this
chapter I will focus only on tangent-space normal maps and from here on just
refer to them as normal maps.

ENCODING NORMALS AS COLOR

Let’s take a closer look at how these normal maps actually store the information in a
texture. Remember that we need to encode the X, Y, and Z component of a normal
in each pixel. When you store the normals in a texture, you can make the assumption
that the normals are unit vectors (i.e., they have a length of 1). There are, of course,
schemes that work differently and may also store an additional height value using the
Alpha channel, for example. This is, however, outside the scope of this chapter, and
I’ll focus only on your run-of-the-mill normal maps.

Since the component of a unit vector can range from –1 to 1, and a color
component can range from 0 to 255, you have the small problem of converting
between these two ranges. Mathematically, this isn’t much of a challenge and it
can be accomplished in the following manner:

R = ((X*0.5)+0.5)*255
G = ((Y*0.5)+0.5)*255
B = ((Z*0.5)+0.5)*255

That’s how simple it is to encode a normal as a single RGB pixel. Then, in the
pixel shader, we need to perform the opposite transformation, which is just as simple:

X = (R*2.0)–1.0
Y = (G*2.0)–1.0
Z = (B*2.0)–1.0

This may look a little bit weird since you’re expecting the R, G, and B values to
be byte values. But since you sample them from a texture, the pixel shader auto-
matically converts the color bytes into float values (which are in the range of 0 to 1
for each color channel). This means that a gray color value of 128 will be sampled
from a texture and then used as a float value of 0.5f in the pixel shader.

In a pixel shader, these three lines can be conveniently baked together into the
following line:

float3 normal = 2.0f * tex2D(NormalSampler, IN.tex0).rgb - 1.0f;

262 Character Animation with Direct3D

In this line of code, a single pixel is sampled from the normal map using the
texture coordinates of the model, and then decoded back into a normal. So far the
theory, if you will, has been pretty easy to follow and not too advanced. But I’m
afraid that this is where the easy part ends. Next up is how to convert the incoming
vector from the light source to the coordinate system of the normal map.

PUTTING THE NORMAL MAP TO USE

In normal vertex lighting you have two vectors: the normal of the vertex and
the direction of the light. To calculate the amount of light the vertex receives, you
convert the vertex normal from object space into world space (so that the normal
and the light direction are in the same coordinate space). After that you can happily
take the dot product of these to vector and use it as a measure of how lit the vertex
is. In the case of the per-pixel lighting using the normal mapping scheme, you have
x amount of normals per triangle, and one light direction as before. Now instead of
transforming all of these surface normals into the same space as the light, we can take
the lonely light direction vector and transform it into the same coordinate space as
the normal map normals. This coordinate space is known as tangent space (hence the
name tangent-space normal maps).

So, in order for you to transform a coordinate (be it a direction, position, or
whatever) from world space into tangent space, you will need a tangent-space matrix.
This matrix works just like any of the other transformation matrices; it converts
between two different coordinate systems. Take the projection matrix, for example.
It converts a 3D image from view space into a flat image in screen space. Figure 12.4
shows the tangent space.

Any given vertex has a tangent space as defined in Figure 12.4. The normal of the
vertex that you’re already familiar with points out from the triangle. The tangent and
the binormal, on the other hand, are new concepts. The tangent and the binormal
both lie on the plane of the triangle. The triangle is also UV mapped to the texture
(be it a diffuse map or a normal map). So what the tangent space actually describes
is a form of 3D texture space.

TRIVIA: Here’s some semi-useless knowledge for you. It is actually incorrect to talk
about binormals in this context. The mathematically correct term is actually
bitangent! However, people have been using the term binormal since no one knows
when. This is loosely because there can be only one normal per surface, but there can
be infinite amount of tangents on the surface. The term “bi” means two or “second
one,” which is why it is incorrect to be talking about a second normal in this case.

You can read more about this (and other interesting things) at Tom Forsyth’s
blog:
http://home.comcast.net/~tom_forsyth/blog.wiki.html

http://home.comcast.net/~tom_forsyth/blog.wiki.html

Chapter 12 Wrinkle Maps 263

Now, the cool thing is that you take a vector in world space and transform it to
this 3D texture space (i.e., the tangent space) for each of the vertices of a triangle.
When this data is passed to the pixel shader, it is interpolated, giving you a correct
world-to-pixel vector for each of the pixels. This means that the light vector is in the

FIGURE 12.4
The tangent space.

264 Character Animation with Direct3D

same coordinate system as the normal in a normal map, which in turn means that
it is okay to perform the light calculation. Figure 12.5 shows a 2D example of this
process in action.

In Figure 12.5 (A) you see the incoming light hitting two vertices, (1) and (2),
marked as black squares. The incoming light vector is transformed into tangent
space, marked by the two corresponding black lines in Figure 12.5 (B). These
transformed light vectors are then sent to the pixel shader, which interpolates the
light vectors for each pixel. This interpolated light vector can then be compared
against the normal stored in the normal map (since they are now in the same
coordinate space). This process should be a bit simpler to understand in 2D, but
the exact same thing happens in 3D as well.

FIGURE 12.5
Transforming a world light direction to tangent space.

Chapter 12 Wrinkle Maps 265

THE TBN-MATRIX

The TBN-Matrix stands for Tangent-Binormal-Normal Matrix, which are the basic
components of tangent space. I won’t go into all the gruesome details behind this 3
x 3 matrix; suffice it to say that it converts between the world space and the tangent
space. You would construct your TBN-Matrix in the following fashion:

Tangent.x Binormal.x Normal.x
TBN = Tangent.y Binormal.y Normal.y

Tangent.z Binormal.z Normal.z

After this you can transform any point in world space (vw) to a vector in tan-
gent space (vt) like this:

vt = vw *TBN

In shader code, this all looks like this:

//Get the position of the vertex in the world

float4 posWorld = mul(vertexPosition, matW);

//Get vertex to light direction

float3 light = normalize(lightPos - posWorld);

//Create the TBN-Matrix

float3x3 TBNMatrix = float3x3(vertexTangent,

vertexBinormal,

vertexNormal);

//Setting the lightVector

lightVec = mul(TBNMatrix, light);

The lightVec vector then gets sent to the pixel shader and is interpolated as
shown in Figure 12.5. The normal you already have for all the vertices. The next
problem to solve is how to calculate the tangent and the binormal for all vertices.

CONVERTING A MESH TO SUPPORT NORMAL MAPPING

So far, we’ve dealt with vertices having position, normals, texture coordinates, bone
indices, and bone weights. Next, we need to be able to add a tangent component
and a binormal component. As you may remember, a vertex can be defined with
the Fixed Vertex Format (FVF), but for more advanced things you need to create an

266 Character Animation with Direct3D

array of D3DVERTEXELEMENT9 objects. With these elements you control every aspect of
how the bitstream from a mesh is interpreted.

As a quick recap, the following function shows you how to get the vertex decla-
ration from a mesh and access the different elements in it (very useful for debugging
purposes).

void PrintMeshDeclaration(ID3DXMesh* pMesh)

{

//Get vertex declaration

D3DVERTEXELEMENT9 decl[MAX_FVF_DECL_SIZE];

pMesh->GetDeclaration(decl);

//Loop through valid elements

for(int i=0; i<MAX_FVF_DECL_SIZE; i++)

{

if(decl[i].Type != D3DDECLTYPE_UNUSED)

{

g_debug << "Offset: " << (int)decl[i].Offset

<< ", Type: " << (int)decl[i].Type

<< ", Usage: " << (int)decl[i].Usage

<< "\n";

}

else break;

}

}

This function prints the offset, type, and usage of all active elements in a vertex
declaration. Sometimes, when you are building your own vertex formats, it can be
very useful to know at what offset a certain element is stored (and what type it is);
especially when you deal with different meshes from different sources and or formats.

Remember that you’re already dealing with meshes containing different
elements. In the bone hierarchy of the SkinnedMesh class, for example, you have
static meshes containing position, normal, and texture coordinates. You also have
the skinned meshes there as well, and on top of the position, normal, and texture
coordinates, they also contain the bone index and bone weight components.

So we need to be able to add components to any arbitrary vertex declaration. For
this purpose I’ve implemented the AddTangentBinormal() function. This function is
not much different from the PrintMeshDeclaration() function. It takes a mesh as
input, extracts the current mesh declaration, and adds the tangent and the binormal
elements to it. Then, it clones the original mesh by using the newly created vertex
declaration. Lastly, it computes the tangents and the binormals for all the vertices in

Chapter 12 Wrinkle Maps 267

the mesh using the D3DXComputeTangentFrame() function. Once this has been done it
releases the old mesh and replaces it with the newly created mesh containing valid
tangents and binormals:

void AddTangentBinormal(ID3DXMesh** pMesh)

{

//Get vertex declaration from mesh

D3DVERTEXELEMENT9 decl[MAX_FVF_DECL_SIZE];

(*pMesh)->GetDeclaration(decl);

//Find the end index of the declaration

int index = 0;

while(decl[index].Type != D3DDECLTYPE_UNUSED)

{

index++;

}

//Get size of last element (in bytes)

int size = 0;

switch(decl[index - 1].Type)

{

case D3DDECLTYPE_FLOAT1:

size = 4;

break;

case D3DDECLTYPE_FLOAT2:

size = 8;

break;

case D3DDECLTYPE_FLOAT3:

size = 12;

break;

case D3DDECLTYPE_FLOAT4:

size = 16;

break;

case D3DDECLTYPE_D3DCOLOR:

size = 4;

break;

268 Character Animation with Direct3D

case D3DDECLTYPE_UBYTE4:

size = 4;

break;

default:

//Unhandled declaration type

};

//Create tangent element

D3DVERTEXELEMENT9 tangent =

{

0,

decl[index - 1].Offset + size,

D3DDECLTYPE_FLOAT3,

D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TANGENT,

0

};

//Create binormal element

D3DVERTEXELEMENT9 binormal =

{

0,

tangent.Offset + 12,

D3DDECLTYPE_FLOAT3,

D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_BINORMAL,

0

};

//End element

D3DVERTEXELEMENT9 endElement = D3DDECL_END();

//Add new elements to the old vertex declaration

decl[index++] = tangent;

decl[index++] = binormal;

decl[index] = endElement;

//Convert mesh to the new vertex declaration

ID3DXMesh* pNewMesh = NULL;

Chapter 12 Wrinkle Maps 269

if(FAILED((*pMesh)->CloneMesh(

(*pMesh)->GetOptions(),

decl,

g_pDevice,

&pNewMesh)))

{

//Failed to clone mesh

return;

}

//Compute the tangents and binormals

if(FAILED(D3DXComputeTangentFrame(pNewMesh, NULL)))

{

//Failed to compute tangents and binormals for new mesh

return;

}

//Release old mesh

(*pMesh)->Release();

//Assign new mesh to the mesh pointer

*pMesh = pNewMesh;

}

As you can see, this function takes a pointer to a pointer to a mesh (or a double
pointer). This means that we can actually reassign the pointer being sent in and
replace what it is pointing to. Most of the resource-loading and mesh-handling
functions in the D3DX library take a double pointer and operate in pretty much the
same way as this function. The AddTangentBinormal() function very much reminds
one of the ConvertToIndexedBlendedMesh() function defined in the ID3DXSkinInfo
interface. What that function did was to add the bone weights and bone indices
elements to a mesh in exactly the same way. It also filled the newly created elements
with some sensible information (just like what is done with the D3DXComputeTangent-
Frame() function).

270 Character Animation with Direct3D

Sometimes you have data stored in a mesh using a certain vertex declaration that
you want to change; however, the data is fine as it is and you just want to change
the declaration. Well, instead of using the CloneMesh() function to create a copy,
you can use the UpdateSemantics() function in the ID3DXBaseMesh class for this. So
if you want to add new elements to the vertex declaration, use the CloneMesh()
function, but if you just want to re-label an element (for example, switching the
tangent and the binormal, or texture coordinate 1 with texture coordinate 2, etc.)
use the UpdateSemantics() function.

After you’ve sent whatever mesh you want normal mapped through this function
you have a mesh ready to be normal mapped. I won’t dive into the math behind
tangent and binormal calculations, but if you’re interested you can read more about
that in [Lengyel01]. Next is the final piece of the puzzle: the shader.

THE NORMAL MAPPING SHADER

The shader code takes all that theory you’ve been reading about, as well as the pre-
pared meshes, and outputs something that looks a lot better than what you’ve seen
so far. In this chapter I have implemented normal mapping for the morphing
meshes and the Face class. You should have little trouble, though, porting it to the
skinned mesh shader yourself. After adding the tangent and the binormal to the
vertex declaration of the base mesh in the Face class, the full vertex declaration of
the Face class looks like the following:

//Face Vertex Format

D3DVERTEXELEMENT9 faceVertexDecl[] =

{

//1st Stream: Base Mesh

{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 0},

{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 0},

{0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 0},

{0, 32, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TANGENT, 0},

{0, 44, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_BINORMAL, 0},

Chapter 12 Wrinkle Maps 271

//2nd Stream

{1, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 1},

{1, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 1},

{1, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 1},

//3rd Stream

{2, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 2},

{2, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 2},

{2, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 2},

//4th Stream

{3, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 3},

{3, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 3},

{3, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 3},

//5th Stream

{4, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 4},

{4, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 4},

{4, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 4},

D3DDECL_END()

};

Note the new tangent and binormal elements in the first stream (the base
mesh stream).

272 Character Animation with Direct3D

As an optimization we only add the tangent and binormal elements to the base
mesh of the Face class. It would be more correct to add it to all the meshes in the
Face class and then blend these (in the same manner you blend the normals).
However, the results are still fine as long as you don’t perform deformations of
ridiculous proportions.

Next, you need the input structure to the vertex shader to match the vertex de-
claration, like this:

//Vertex Input

struct VS_INPUT

{

//Stream 0: Base Mesh

float4 pos0 : POSITION0;

float3 norm0 : NORMAL0;

float2 tex0 : TEXCOORD0;

float3 tangent : TANGENT0;

float3 binormal : BINORMAL0;

//Stream 1: Morph Target 1

float4 pos1 : POSITION01;

float3 norm1 : NORMAL1;

//Stream 2: Morph Target 2

float4 pos2 : POSITION2;

float3 norm2 : NORMAL2;

//Stream 3: Morph Target 3

float4 pos3 : POSITION3;

float3 norm3 : NORMAL3;

//Stream 4: Morph Target 4

float4 pos4 : POSITION4;

float3 norm4 : NORMAL4;

};

Nothing surprising here; the new tangent and binormal vectors have been
added to stream 0 just like in the vertex declaration. What is new, though, is the
VS_OUTPUT structure (describing what comes out from the vertex shader and into the
pixel shader):

Chapter 12 Wrinkle Maps 273

//Vertex Output / Pixel Shader Input

struct VS_OUTPUT

{

float4 position : POSITION0;

float2 tex0 : TEXCOORD0;

float3 lightVec : TEXCOORD1;

};

Instead of the old shade float value that we used to send in to the pixel shader,
we send in the light vector (in tangent space). This is the vector that gets interpolated
(just like any other value you send into the pixel shader), as illustrated in Figure 12.5.
Then, to transform information stored in the VS_INPUT structure to the VS_OUTPUT
structure, the following vertex shader performs the morphing and the conversion of
the light vector to tangent space:

//Vertex Shader

VS_OUTPUT morphNormalMapVS(VS_INPUT IN)

{

VS_OUTPUT OUT = (VS_OUTPUT)0;

float4 position = IN.pos0;

float3 normal = IN.norm0;

//Blend Position

position += (IN.pos1 - IN.pos0) * weights.r;

position += (IN.pos2 - IN.pos0) * weights.g;

position += (IN.pos3 - IN.pos0) * weights.b;

position += (IN.pos4 - IN.pos0) * weights.a;

//Blend Normal

normal += (IN.norm1 - IN.norm0) * weights.r;

normal += (IN.norm2 - IN.norm0) * weights.g;

normal += (IN.norm3 - IN.norm0) * weights.b;

normal += (IN.norm4 - IN.norm0) * weights.a;

//Getting the position of the vertex in the world

float4 posWorld = mul(position, matW);

OUT.position = mul(posWorld, matVP);

//Get normal, tangent, and binormal in world space

normal = normalize(mul(normal, matW));

float3 tangent = normalize(mul(IN.tangent, matW));

float3 binormal = normalize(mul(IN.binormal, matW));

274 Character Animation with Direct3D

//Getting vertex -> light vector

float3 light = normalize(lightPos - posWorld);

//Calculating the binormal and setting

//the tangent binormal and normal matrix

float3x3 TBNMatrix = float3x3(tangent, binormal, normal);

//Setting the lightVector

OUT.lightVec = mul(TBNMatrix, light);

OUT.tex0 = IN.tex0;

return OUT;

}

It is very common that the binormal is actually left out of this whole process and
then calculated on-the-fly in the vertex shader. This can end up saving a lot of
memory—12 bytes per vertex, in fact. In large projects this can add up to a whole
lot. The binormal can then be calculated as a cross-product between the normal
and the tangent in the following manner:

float3 binormal = normalize(cross(normal, tangent));

Once the position and normal of the face has been calculated, the direction
from the light source to the vertex is calculated. This is fed into the TBN Matrix,
which transforms the light vector to tangent space. This information, together
with the texture coordinates (as usual) are stored in the VS_OUTPUT structure and
sent onward to the pixel shader.

//Pixel Shader

float4 morphNormalMapPS(VS_OUTPUT IN) : COLOR0

{

//Calculate the color and the normal

float4 color = tex2D(DiffuseSampler, IN.tex0);

//This is how you uncompress a normal map

float3 normal = 2.0f * tex2D(NormalSampler, IN.tex0).rgb - 1.0f;

//Normalize the light

float3 light = normalize(IN.lightVec);

Chapter 12 Wrinkle Maps 275

//Set the output color

float shade = max(saturate(dot(normal, light)), 0.2f);

return color * shade;

}

In the pixel shader, the diffuse color is first sampled from the diffuse map.
Then the normal map is sampled using the same texture coordinate. For this
pixel, the normal is calculated from the normal map color as described earlier and
compared with the light vector sent from the vertex shader. The resulting dot
product is then multiplied with the color pixel and drawn onscreen. Figure 12.6
shows a comparison between normal vertex lighting and the more advanced per-
pixel normal map lighting scheme.

As you can see, the normal mapped version has a lot more detail compared to
the simpler vertex lighting scheme; this despite the fact that both faces have the exact
same polygon count. In the normal map, I’ve added some scars and bumps to the
head and tried to make the cheekbones and forehead more pronounced. Finally,
here’s the code example for this somewhat complex and long chapter.

FIGURE 12.6
Vertex lighting vs. normal mapping.

276 Character Animation with Direct3D

Figure 12.7 shows four snapshots of the example code in action. The light
source has been animated to better emphasize the normal map lighting.

EXAMPLE 12.1

In this example, you’ll find the full code for loading the normal maps,
converting the mesh, adding the tangents and the binormals, as well as the

full shader code. You’ll notice that the Face class is animated as well using vertex
morphing (as covered in Chapters 8 and 9). Pay special attention to understanding the
flow of this whole process: how the tangents and binormals are added to the mesh,
initialized, passed to the shader, and used to create the TBN Matrix; and finally, how
the light vector is transformed to tangent space before the lighting calculation is done.

Chapter 12 Wrinkle Maps 277

CREATING NORMAL MAPS

Here’s a short section about how normal maps are created—something which in
itself is a bit of a science. The process needs two things: the low-polygon mesh you
intend to use in the game and a high-polygon mesh having all that extra detail.
Figure 12.8 shows the two meshes needed to create a normal map.

FIGURE 12.7
Normal mapping with animated light source.

278 Character Animation with Direct3D

You are already familiar with the low-polygon mesh. It may have a strict polygon
limit (and other restrictions) depending on whatever game requirements you may
have. The high-polygon mesh, however, has no theoretical upper limit on the amount
of polygons, and it can have millions upon millions of triangles (as long as you have
a decent enough computer to support it). It doesn’t make sense, however, to have
more detail in the mesh than can be represented in your normal map. So if you’re
planning to have a 1024 x 1024 resolution normal map, there is no point in having a
high-detail mesh with more detail than can be represented by this normal map.

FIGURE 12.8
Meshes needed to create a normal map.

Chapter 12 Wrinkle Maps 279

The low- and high-polygon meshes are first placed at the same location so that
they are intersecting. Next, you loop over all the pixels in the normal map, and for
each pick the actual position on the low-polygon model using the UV map. Once you
have this position you find where the normal of the low-polygon surface intersects the
high-polygon model, sample the normal of the high-polygon model instead, and
write this value to the normal map (encoded in RGB as explained earlier). Figure 12.9
shows this process in a 2D example.

The big black and blocky line in Figure 12.9 represents the low-polygon mesh
where the gray smooth line represents the high-polygon model. Each of the small
black normals represents one pixel sample point in the normal map. First you can
see the sample points (black normals) extend until they hit the high-polygon
model, where finally the gray normal is recorded and stored in the normal map. So
later in the game, when we render the low-polygon model using the normal map
taken from the high-polygon model, we can create the illusion of a much more
detailed surface.

However, there are some pitfalls when creating normal maps. The low-polygon
mesh needs to be UV mapped, but the high-polygon mesh has no such requirement;
it can be pure geometry. Another restriction is that your low-polygon mesh cannot
have overlapping UV coordinates when it goes through the normal map creation
process. This means that all points on the model must have a unique place on the UV
map; otherwise, the program creating the normal map won’t know where on the
high-polygon model to sample the normal from. Often, artists model only one half of
a character and then copy this half, flip the copy, and merge it with the original half,
thus producing the full character. In essence this also means that the UV coordinates
of both halves are the same, which is a big “no-no” when creating normal maps. So
no surfaces using tiled or mirrored UV coordinates.

FIGURE 12.9
Calculating normals from low- and high-polygon meshes.

280 Character Animation with Direct3D

Just because a model cannot have a mesh with overlapping UV coordinates at the
time the normal map is created doesn’t mean that it can’t have it at runtime. This
rule about having shared UV space (either tiled or mirrored UV space) is not really
a strict rule. At runtime it is fine to use a tiled normal map (something that is often
done for floors, walls, etc.). A mirrored normal map, on the other hand, is more
problematic. Think, for example, of a character that has had its left side created as
a mirror image of its right side. This means that they use the same UV space in the
diffuse and normal map. This in turn means that when you light a pixel from the
right shoulder it will work correctly. However, when you light a pixel on the
mirrored part of your character, this normal will also be mirrored, which leads to
incorrect lighting. With some additional programming, though, you can implement
a shader that handles this problem. By storing an additional sign value in each of
the vertices of the mesh (depending on whether or not it is a mirrored vertex), you
can easily switch between using the left-handed or right-handed coordinate system
when sampling the normals from the normal map.

CREATING NORMAL MAPS IN PRACTICE

That’s about all you need to know about how to create normal maps…in theory. In
most cases you’ll play the role of a programmer and have someone else worry about
creating the normal maps for you (most often this falls on the artist’s task list).
However, you as a programmer still need to know how this is done, since in the end
it affects your job as well. In practice, there are a lot of different programs that will
create the normal maps for you. Some of the most popular (artist) tools for creat-
ing and editing normal maps are:

Pixologic’s ZBrush
http://www.pixologic.com

Autodesk’s Mudbox
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=10707763

Both of these programs have free trial versions that you can download and try
out. However, normal maps can also be created with the free Normal Mapper tool
(including source code) from ATI, which you can download from here:

http://www2.ati.com/developer/NormalMapper-3_2_2.zip

This tool comes with an exporter to both 3D Studio Max and Maya that exports
a model to the NMF format, which can then be used by the Normal Mapper tool.

http://www.pixologic.com
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=10707763
http://www2.ati.com/developer/NormalMapper-3_2_2.zip

Chapter 12 Wrinkle Maps 281

The readme file bundled with the tool explains how to use it and how to install the
3D Studio and Maya exporter plug-ins.

You can also use the free Melody tool from NVidia available from here:

http://developer.nvidia.com/object/melody_home.html

Melody also supports the more common .3ds and .obj formats.

I have also included a max file on the accompanying CD-ROM containing the
high- and low-polygon version of the Soldier’s face (also together with the exported
NMF files). You’ll find these files in the “Head Model” folder together with
Example 12.1.

There is also a great Photoshop plug-in tool from NVIDIA available here:

http://developer.nvidia.com/object/photoshop_dds_plugins.html

With this tool you can convert bump maps or height maps into normal maps.
This is a great way of creating normal maps for flat surfaces such as walls and floors,
etc. This tool also allows you to manually edit and then re-normalize normal maps,
which is great for small fixes and such.

SPECULAR HIGHLIGHT

Another tangent (pun intended) before we look at wrinkle maps, is how to implement
specular lighting—also known as specular highlight. So far I’ve only shown you how
diffuse lighting works. Now with the normal maps in place it really pays off to also
implement a specular lighting model. Specular lighting in real life is actually reflections
of the light source on a surface. The shinier a surface is, the more the light source will
reflect in it.

A specular highlight is dependent on where the viewer or camera is located in
the world. The specular highlight will appear on the model where the surface normal
is pointing halfway between the incoming light and the incoming view direction, as
shown in Figure 12.10.

http://developer.nvidia.com/object/melody_home.html
http://developer.nvidia.com/object/photoshop_dds_plugins.html

282 Character Animation with Direct3D

Figure 12.10 shows the halfway vector between the light source and the view
direction. Both the position of the light and the camera get sent to the vertex
shader, which then calculates the incoming vectors and the halfway vector, which
it sends on to the pixel shader. Note that if you are using normal mapping you will
also need to convert the halfway vector to tangent space using the TBN Matrix.
The following shader code will calculate the halfway vector (the posWorld variable
denotes the position of the vertex in world coordinates):

//Getting light-to-vertex direction

float3 lightDir = normalize(lightPos - posWorld);

//Get camera-to-vertex direction

float3 viewDir = normalize(cameraPos - posWorld);

//Calculate the halfway vector

float3 vHalf = normalize(light + viewDir);

FIGURE 12.10
Specular highlight.

Chapter 12 Wrinkle Maps 283

Once you have the halfway vector in the pixel shader, you need to determine
how much of the light source will be reflected, or, in other words, how large the
specular highlight will be. This is actually governed by how perfect the surface is.
If the surface is rough, more of the light will scatter, making the highlight larger
and duller. On the other hand, if the surface is perfectly smooth it will create a
sharp reflection of the light source and have a small but bright specular highlight.
Compare, for example, the perfect surface of a bowling ball with the rough surface
of human skin. Figure 12.11 shows some different specular highlights.

The images in Figure 12.11 show the same surface with an increasing amount
of surface smoothness. As you can see from this figure, having specular highlights
gives you more information about the object you are looking at. With specular
highlights you get a feel of what surface something is made of as well as information
about where lights are placed in relation to the object.

So how are these highlights calculated in the pixel shader? The following code
snippet shows how the specular highlight is calculated from the halfway vector in
the pixel shader:

//Get the dot product between the surface normal and the halfway vector

float specular = max(saturate(dot(normal, normalize(lightHalf))), 0.0f);

//Raise the specular value to the power of the shininess value

specular = pow(specular, shineValue);

First we do the usual light calculation using the dot product between the surface
normal and the halfway vector. Then we raise this value (which will be in the range
of 0 to 1) with the shininess value of the surface. The resulting value we multiply with
the specular color and then add to the diffuse color of the pixel. Voila! You’ve
implemented specular highlights.

FIGURE 12.11
Specular highlights on different surfaces.

284 Character Animation with Direct3D

SPECULAR MAPS

Different materials have different specular colors. For example, some materials
like mirrors or human skin (which has a thin layer of oil) reflect most of the color
spectrum in the specular highlights. Other materials, like metals, reflect only the
color of the material. The previous section used only one shininess value for the
whole object/material. For characters, however, this is usually not enough since
you might want to have a different shininess value for different parts of your
character, skin, clothes, shoes, armor, etc. Therefore, most game engines these
days make use of specular maps. These maps contain the color (and intensity) of
the specular highlight. Figure 12.12 shows an example of the specular map used
in Example 12.2.

This texture is mostly skin colored (you’ll find it on the CD-ROM in full
color). As a general rule, specular maps have brighter pixels on flat surfaces and
dull colors on corners and curved surfaces. There are several tutorials online about
how to create specular maps, but again this is something better left to the artists.
The following tutorial gives you a good starting point; it covers how to convert a
normal map to a specular map using Photoshop:

FIGURE 12.12
Specular map example.

Chapter 12 Wrinkle Maps 285

http://www.modwiki.net/wiki/Start_a_Specular_map_with_a_Normal_map

The following code shows the entire vertex and pixel shader code for rendering a
normal-mapped face with a specular map (note that the input and output structures
are the same as in the previous example):

//Vertex Shader

VS_OUTPUT morphNormalMapVS(VS_INPUT IN)

{

VS_OUTPUT OUT = (VS_OUTPUT)0;

float4 position = IN.pos0;

float3 normal = IN.norm0;

//Blend Position

position += (IN.pos1 - IN.pos0) * weights.r;

position += (IN.pos2 - IN.pos0) * weights.g;

position += (IN.pos3 - IN.pos0) * weights.b;

position += (IN.pos4 - IN.pos0) * weights.a;

//Blend Normal

normal += (IN.norm1 - IN.norm0) * weights.r;

normal += (IN.norm2 - IN.norm0) * weights.g;

normal += (IN.norm3 - IN.norm0) * weights.b;

normal += (IN.norm4 - IN.norm0) * weights.a;

//Getting the position of the vertex in the world

float4 posWorld = mul(position, matW);

OUT.position = mul(posWorld, matVP);

normal = normalize(mul(normal, matW));

float3 tangent = normalize(mul(IN.tangent, matW));

float3 binormal = normalize(mul(IN.binormal, matW));

//Getting light-to-vertex direction

float3 lightDir = normalize(lightPos - posWorld);

//Get camera-to-vertex direction

float3 viewDir = normalize(cameraPos - posWorld);

//Calculate the half vector

float3 vHalf = normalize(lightDir + viewDir);

http://www.modwiki.net/wiki/Start_a_Specular_map_with_a_Normal_map

286 Character Animation with Direct3D

//Calculating the binormal and setting

//the tangent binormal and normal matrix

float3x3 TBNMatrix = float3x3(tangent, binormal, normal);

//Setting the lightVector

OUT.lightVec = mul(TBNMatrix, lightDir);

OUT.lightHalf = mul(TBNMatrix, vHalf);

OUT.tex0 = IN.tex0;

return OUT;

}

//Pixel Shader

float4 morphNormalMapPS(VS_OUTPUT IN) : COLOR0

{

//Calculate the color and the normal

float4 color = tex2D(DiffuseSampler, IN.tex0);

//This is how you uncompress a normal map

float3 normal = 2.0f * tex2D(NormalSampler, IN.tex0).rgb - 1.0f;

//Get specular

float4 specularColor = tex2D(SpecularSampler, IN.tex0);

//Set the output color

float diffuse = max(saturate(

dot(normal, normalize(IN.lightVec))), 0.2f);

float specular = max(saturate(

dot(normal, normalize(IN.lightHalf))), 0.0f);

specular = pow(specular, 85.0f) * 0.4f;

return color * diffuse + specularColor * specular;

}

Chapter 12 Wrinkle Maps 287

Figure 12.13 shows another screenshot of the Soldier’s face using somewhat
“exaggerated” highlights. Note that this isn’t the kind of result you’d actually want for
skin. The examples and images in this chapter are a bit exaggerated to emphasize the
effect of the specular highlights.

EXAMPLE 12.2

Example 12.2 contains all the code for implementing specular highlights.
Play around with the shininess value in the pixel shader, and if you have

good image-editing software, play around with the specular map as well. This example
also implements specular highlights for the old diffuse lighting model (used for the
eyes in the example, which are not normal mapped).

288 Character Animation with Direct3D

WRINKLE MAPS

You’ve now arrived at the goal of this chapter: the wrinkle maps. These maps are
basically an animated or weighted normal map that is connected to the move-
ment of the face. For example, smiling may reveal the dimples in the cheeks of the
characters. These small deformations occur as a result of the underlying muscles
in the face moving. Another example of this phenomenon is wrinkles that appear
(or disappear) on the forehead as a person raises or lowers his or her eyebrows.

FIGURE 12.13
Exaggerated highlights.

Chapter 12 Wrinkle Maps 289

The use of wrinkle maps in games is still a recent addition, and most games today
don’t bother with it unless the characters are shown in close-up. Figure 12.14
shows a grayscale image of a normal map containing wrinkles for the forehead and
dimples.

Note that the wrinkles in Figure 12.14 have been made somewhat extreme to
stand out a bit better (for educational purposes). Normally, wrinkle maps are
something you don’t want sticking out like a sore thumb. Rather, they should be
a background effect that doesn’t steal too much of the focus. Next, you need to
encode which regions of the wrinkle map should be affected by which facial
movements. In the upcoming wrinkle map example, I’ve used a separate texture
to store masking of the wrinkle map regions. You could, however, also store this
data in the vertex color, for example. Figure 12.15 shows the mask used to define
the three different regions of the wrinkle map.

FIGURE 12.14
Wrinkle normal map.

290 Character Animation with Direct3D

In Figure 12.15, three different regions are defined. The Red channel defines the
part of the face that isn’t affected by animated wrinkles. The Green channel defines
the forehead wrinkles, and the Blue channel defines the two dimple areas at either
side of the mouth. To the shader we will upload two blend values (depending on
what emotion or shape the character’s face has). These two values are called fore-
headWeight and cheekWeight. At each pixel, we sample the blend map, multiply the
Green channel with the foreheadWeight and the Blue channel with the cheekWeight.
The resulting value is used to fade the normal in/out from the wrinkle normal map.
The following code snippet shows how this is done in the pixel shader:

//Pixel Shader

float4 morphNormalMapPS(VS_OUTPUT IN) : COLOR0

{

//Sample color

float4 color = tex2D(DiffuseSampler, IN.tex0);

//Sample blend from wrinkle mask texture

float4 blend = tex2D(BlendSampler, IN.tex0);

//Sample normal and decompress

float3 normal = 2.0f * tex2D(NormalSampler, IN.tex0).rgb - 1.0f;

//Calculate final normal weight

float w = blend.r + foreheadWeight * blend.g + cheekWeight * blend.b;

FIGURE 12.15
Wrinkle map mask.

Chapter 12 Wrinkle Maps 291

w = min(w, 1.0f);

normal.x *= w;

normal.y *= w;

//Re-normalize

normal = normalize(normal);

//Normalize the light

float3 light = normalize(IN.lightVec);

//Set the output color

float diffuse = max(saturate(dot(normal, light)), 0.2f);

return color * diffuse;

}

EXAMPLE 12.3

Example 12.3 has the full implementation for the wrinkle maps. You can
find how the weights for the forehead and dimples are set in the render

method of the Face class.

292 Character Animation with Direct3D

Figure 12.16 shows the wrinkle maps in action.

Thanks to Henrik Enqvist at Remedy Entertainment for the idea of covering wrinkle
maps. He also graciously supplied the example code for the wrinkle map example.

CONCLUSIONS

This chapter covered all aspects of normal mapping, from the theory of normal
maps to how to create them and how to apply them on a real-time character. This
base knowledge then allows you to implement the more advanced wrinkle maps as
an animated extension to normal maps. I hope you managed to understand all the
steps of this somewhat complex process so that you’ll be able to use it in your own
projects. The DirectX SDK also has skinned characters with high-quality normal
maps, which are excellent to play around with.

I also touched briefly on implementing a specular lighting model—something
that, together with normal maps, really makes your character “shine.” After the
slight sidetrack this chapter has taken, I’ll return to more mainstream character
animation again. Next up is how to create crowd simulations.

CHAPTER 12 EXERCISES

Implement normal mapping for the SkinnedMesh class using the code in the
Face class as a base.

FIGURE 12.16
Wrinkle maps in action.

Chapter 12 Wrinkle Maps 293

Implement normal mapping without supplying the binormal from the mesh,
but calculate it on-the-fly in the vertex shader.
Implement support for multiple lights (for both normal mapping and specular
highlights).

FURTHER READING

[Cloward] Cloward, Ben, “Creating and Using Normal Maps.” Available online at
http://www.bencloward.com/tutorials_normal_maps1.shtml.

[Gath06] Gath, Jakob, “Derivation of the Tangent Space Matrix.” Available
online at http://www.blacksmith-studios.dk/projects/downloads/tangent_
matrix_derivation.php, 2006.

[Green07] Green, Chris, “Efficient Self-Shadowed Radiosity Normal Mapping.”
Available online at http://www.valvesoftware.com/publications/2007/SIGGRAPH
2007_EfficientSelfShadowedRadiosityNormalMapping.pdf, 2007.

[Hess02] Hess, Josh, “Object Space Normal Mapping with Skeletal Animation
Tutorial.” Available online at: http://www.3dkingdoms.com/tutorial.htm, 2002.

[Lengyel01] Lengyel, Eric. “Computing Tangent Space Basis Vectors for an
Arbitrary Mesh.” Terathon Software 3D Graphics Library. Available online at
http://www.terathon.com/code/tangent.html, 2001.

http://www.bencloward.com/tutorials_normal_maps1.shtml
http://www.blacksmith-studios.dk/projects/downloads/tangent_matrix_derivation.php
http://www.blacksmith-studios.dk/projects/downloads/tangent_matrix_derivation.php
http://www.valvesoftware.com/publications/2007/SIGGRAPH2007_EfficientSelfShadowedRadiosityNormalMapping.pdf
http://www.valvesoftware.com/publications/2007/SIGGRAPH2007_EfficientSelfShadowedRadiosityNormalMapping.pdf
http://www.3dkingdoms.com/tutorial.htm
http://www.terathon.com/code/tangent.html

This page intentionally left blank

295

Crowd Simulation13

This chapter introduces the concept of crowd simulation and how it can be used in
games to control large groups of NPCs. You will first get familiar with the ancestor
of crowd simulation—namely, flocking behaviors. With flocking behaviors it is
possible to control a large group of entities, giving them a seemingly complex group
behavior using only a few simple rules. This idea is then carried over to crowd
simulation and extended to create some even more complex behaviors. Here’s what
will be covered in this chapter:

296 Character Animation with Direct3D

Flocking behaviors
“Boids” implementation
Basic crowd simulation
Crowd simulation and obstacle avoidance

FLOCKING BEHAVIORS

Let’s start from the beginning. Like many other algorithms in computer science,
flocking behaviors (aka swarm behaviors or swarm intelligence) try to emulate what
already occurs in nature. Birds, fish, insects, and many other groups of animals seem
to exhibit something called emergent behavior.

In philosophy, systems theory, and science, emergence is the way complex systems
and patterns arise out of a multiplicity of relatively simple interactions. Emergence
is central to the theories of integrative levels and of complex systems.

-Wikipedia

Flocking algorithms have been around a while now, and in theory they are
simple to both understand and implement. Flocking algorithms are also lightweight
(i.e., not very CPU intensive), which is also a huge plus (especially since some of the
flocks can have quite a few entities in them). The theory is to have a set of rules that
are evaluated for each entity per frame, to determine where this entity should move.
The result from the different individual rules are summed up (and often weighted)
to produce the final move direction.

One example of this is how ants navigate. If an ant is out on a random hike and
finds a source of food, it will leave a trail of pheromones on its way back to the stack,
carrying with it a piece of the food. Another ant on its way out from the stack will
encounter this trail and then be more likely to follow it to the food source. On its way
back, the second ant will lay its own trail of pheromones (reinforcing the first one),
making it even more likely that a third ant will follow the first two. Once the food
source has been depleted, the ants will stop laying the trail and the pheromones will
evaporate with time, stopping ants from wasting time down that trail. So with these
seemingly simple rules that each individual follows, the community as a whole still
runs a pretty complex operation. This specific example has even spawned its own
algorithm called Ant Colony Optimization (ACO), which is used to find good paths
through a graph/search space. ACO is an adaptable algorithm, which makes it perfect
for changing environments. For example, if a certain ant trail is blocked, the
pheromones will evaporate and the ants will start using other trails instead. This tech-
nique has been successfully applied to packet routing in networks.

Chapter 13 Crowd Simulation 297

BOIDS

In 1986, Craig Reynolds made a computer simulation of three simple steering
behaviors for a group of creatures he called “Boids.” With only three simple steer-
ing rules he managed to show some surprisingly complex emergent behavior. Each
Boid just considers a local area around itself and then bases its steering on whatever
objects or other Boids are in this area.

Separation

The first rule is to make the Boids avoid colliding with other Boids and to avoid
crowding each other. This rule is named Separation. It calculates a force pointing
away from local neighbors, as shown in Figure 13.1.

Alignment

The second rule makes Boids keep the same heading as other Boids. This rule is
called Alignment, and it states that a Boid should steer toward the average heading
of its local neighbors. This rule is shown in Figure 13.2.

FIGURE 13.1
Separation.

298 Character Animation with Direct3D

Cohesion

The third and last rule of the Boid steering behaviors is called Cohesion. It keeps
the flock together by making a Boid steer toward the center location of its local
neighbors. This last rule is shown in Figure 13.3.

Summing Up

For each frame, these three rules each produce a force vector according to the
location of a Boid’s local neighbors. For now, let’s just consider these three simple
rules (later you’ll see how you can add your own rules to create your own custom
behaviors). Figure 13.4 shows the three steering behaviors summed up to produce
the final force for the Boid.

FIGURE 13.2
Alignment.

FIGURE 13.3
Cohesion.

In Figure 13.4, Fs, Fa, and Fc stand for the forces of the Separation, Alignment,
and Cohesion rules, respectively. The resulting force F is the force that will be used
to update the velocity and position of the Boid. In the upcoming example I’ll use
the Boid class to control an individual entity:

class Boid

{

friend class Flock;

public:

Boid(Flock *pFlock);

~Boid();

void Update(float deltaTime);

void Render(bool shadow);

private:

static Mesh* sm_pBoidMesh;

Flock* m_pFlock;

D3DXVECTOR3 m_position;

D3DXVECTOR3 m_velocity;

};

The Boid class contains a pointer to the flock it belongs to as well as a position
and a velocity. In the Boid’s Update() function the different steering behaviors and
their resulting forces are calculated and used to update the velocity and position of
the Boid. To manage a flock of Boids, I’ve created the Flock class like this:

Chapter 13 Crowd Simulation 299

FIGURE 13.4
Summing up the forces.

class Flock

{

public:

Flock(int numBoids);

~Flock();

void Update(float deltaTime);

void Render(bool shadow);

void GetNeighbors(Boid* pBoid,

float radius,

vector<Boid*> &neighbors);

private:

vector<Boid*> m_boids;

};

The only special thing about the Flock class is the GetNeighbors() function,
which just fills a list of Boids within a radius of the querying Boid:

void Flock::GetNeighbors(Boid* pBoid,

float radius,

vector<Boid*> &neighbors)

{

for(int i=0; i<(int)m_boids.size(); i++)

{

if(m_boids[i] != pBoid)

{

D3DXVECTOR3 toNeighbor;

toNeighbor = pBoid->m_position - m_boids[i]->m_position;

if(D3DXVec3Length(&(toNeighbor)) < radius)

{

neighbors.push_back(m_boids[i]);

}

}

}

}

Note that the GetNeighbors() function has a rather naïve implementation in this
example. For very large flocks it would be unnecessary to loop through the entire
flock to find the closest neighbors (especially since we need to do this for each of the
entities in the flock). A better way of getting the nearest neighbors would be to use
a space partitioning tree, such as a KD-tree. See the following URL for a good
introduction to KD-trees:

http://en.wikipedia.org/wiki/Kd-tree

300 Character Animation with Direct3D

http://en.wikipedia.org/wiki/Kd-tree

Chapter 13 Crowd Simulation 301

Since each Boid object contains a pointer to its flock, it can use the GetNeighbors()
function to find any neighboring Boids. Then it is easy to calculate the three rather
simple steering behaviors as covered earlier, sum these up, and apply the resulting
force to the velocity and position of the Boid. The Boid::Update() function shows
you how:

void Boid::Update(float deltaTime)

{

//Tweakable values

const float NEIGHBORHOOD_SIZE = 3.5f;

const float SEPARATION_LIMIT = 2.5f;

const float SEPARATION_FORCE = 15.0f;

const float BOID_SPEED = 3.0f;

//Get neighboring Boids

vector<Boid*> neighbors;

m_pFlock->GetNeighbors(this, NEIGHBORHOOD_SIZE, neighbors);

//Forces

D3DXVECTOR3 acceleration(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 separationForce(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 alignmentForce(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 cohesionForce(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 toPointForce(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 floorForce(0.0f, 0.0f, 0.0f);

if(!neighbors.empty())

{

//Calculate neighborhood center

D3DXVECTOR3 center(0.0f, 0.0f, 0.0f);

for(int i=0; i<(int)neighbors.size(); i++)

{

center += neighbors[i]->m_position;

}

center /= (float)neighbors.size();

//RULE 1: Separation

for(int i=0; i<(int)neighbors.size(); i++)

{

D3DXVECTOR3 vToNeighbor = neighbors[i]->m_position -

m_position;

float distToNeightbor = D3DXVec3Length(&vToNeighbor);

302 Character Animation with Direct3D

if(distToNeightbor < SEPARATION_LIMIT)

{

//Too close to neighbor

float force = 1.0f - (distToNeightbor / SEPARATION_LIMIT);

separationForce -= vToNeighbor * SEPARATION_FORCE * force;

}

}

//RULE 2: Alignment

for(int i=0; i<(int)neighbors.size(); i++)

{

alignmentForce += neighbors[i]->m_velocity;

}

alignmentForce /= (float)neighbors.size();

//RULE 3: Cohesion

float distToCenter = D3DXVec3Length(&(center - m_position)) + 0.01f;

cohesionForce = (center - m_position) / distToCenter;

}

//RULE 4: Steer to point

toPointForce = D3DXVECTOR3(0.0f, 15.0f, 0.0f) - m_position;

D3DXVec3Normalize(&toPointForce, &toPointForce);

toPointForce *= 0.5f;

//RULE 5: Dont crash!

if(m_position.y < 3.0f)

floorForce.y += (3.0f - m_position.y) * 100.0f;

//Sum up forces

acceleration = separationForce +

alignmentForce +

cohesionForce +

toPointForce +

floorForce;

//Update velocity & position

D3DXVec3Normalize(&acceleration, &acceleration);

m_velocity += acceleration * deltaTime * 3.0f;

D3DXVec3Normalize(&m_velocity, &m_velocity);

m_position += m_velocity * BOID_SPEED * deltaTime;

Chapter 13 Crowd Simulation 303

//Cap Y position

m_position.y = max(m_position.y, 1.0f);

}

In addition to the three normal Boid steering behaviors, I have added a steer-
toward-point force (for keeping the Boids in the camera’s view frustum) and an
avoid-the-floor force, for making sure the Boids don’t crash with the floor. Other
than that this function is fairly straightforward and implements the steering
behaviors covered earlier.

EXAMPLE 13.1

This example shows you a simple implementation of the Boids flocking be-
havior. There are plenty of tweakable values available to change the way

the flock behaves. For instance, there’s the size of the area in which neighboring
Boids will affect each other. There’s also the matter of weighing the different steering
behaviors. For example, it might be more important that they avoid colliding with
each other (Separation) than it is that they stay together as a group (Cohesion).

304 Character Animation with Direct3D

INTRODUCTION TO CROWD SIMULATION

There’s a lot of academic research being done in the crowd simulation field of
computer science. There are several uses for crowd simulations (aside from
games). One example is when simulating area or building evacuations. By using
crowd simulations it is possible to simulate the time it would take for a crowd to
evacuate a building in case of fire, for example. It can also show where any
potential choke points are or help to determine where the most efficient place for
a fire exit would be, and so on. Another example of using crowd simulation is in
civil engineering when simulating pedestrian crossings, sidewalks, city planning,
and more. The bottom line is that this is a relatively cheap method of testing all
thinkable scenarios and getting a fair idea of how it would play out in reality.

As the processing power of today’s computers and consoles are ever increasing,
it is suddenly feasible to render a multitude of characters in real time. Many games
have recently utilized crowd simulations for “innocent” bystanders—most notable
among these games is probably the Grand Theft Auto series.

Crowd simulation is basically not that different from flocking algorithms.
Usually, crowd simulation takes the steering behaviors used by flocking algorithms
to the next level. The entities used in crowd simulation often have much more
logic governing their actions, making them much smarter than your average Boid.
That is why entities in a crowd simulation are most often referred to as agents
instead of entities.

An agent may have its own internal state machine. For example, an agent may act
differently if it is in the hypothetical “wounded” state compared to the “normal”
state. The crowd simulation may also govern which animations to play for the agents.
Say, for example, that two agents are heading toward each other on a collision course.
Many things could happen in a situation like this. They could stay and talk to each
other, or one could step out of the way for the other one, and so on.

The most basic addition to a crowd simulation system is that of path finding.
Instead of just using a simple point in space and steering toward this as the Boids
did, your crowd agent could query the environment for a smart path to reach its
goal. The agent follows the path in the same manner as the simple “to-point”
steering behavior, but the difference is that the agent steers toward the active
waypoint instead.

Although a crowd agent usually gets less “smarts” than, say, an enemy opponent
character in a first-person shooter game, it still needs to look smart and obey the rules
of the environment. At the very least, this means avoiding other crowd members and
obstacles placed in the environment. In this section we’ll look at extending the flock-
ing steering behaviors to a simple crowd simulation. The following CrowdEntity class
governs an entity in the crowd (I still call it an entity instead of an agent since there
aren’t yet quite enough brains in this class at the moment to merit an agent status):

Chapter 13 Crowd Simulation 305

class CrowdEntity

{

friend class Crowd;

public:

CrowdEntity(Crowd *pCrowd);

~CrowdEntity();

void Update(float deltaTime);

void Render();

D3DXVECTOR3 GetRandomLocation();

private:

static SkinnedMesh* sm_pSoldierMesh;

Crowd* m_pCrowd;

D3DXVECTOR3 m_position;

D3DXVECTOR3 m_velocity;

D3DXVECTOR3 m_goal;

ID3DXAnimationController* m_pAnimController;

};

The CrowdEntity class definition looks very much like the Boid class definition.
The only major differences are the additions of an individual goal, a shared skinned
mesh (as opposed to a simple static mesh), and the individual animation controller
with which to control the skinned mesh. The GetRandomLocation() function is just
a simple helper function to generate the goal of a crowd entity. Just as the Boid
example had a Flock class, this crowd simulation has the following Crowd class to
govern multiple crowd entities:

class Crowd

{

public:

Crowd(int numEntities);

~Crowd();

void Update(float deltaTime);

void Render();

void GetNeighbors(CrowdEntity* pEntity,

float radius,

vector<CrowdEntity*> &neighbors);

private:

vector<CrowdEntity*> m_entities;

};

306 Character Animation with Direct3D

On the surface this class also looks like a straight port from the Flock class, and
in most senses it is. However, later I’ll add more stuff to this class, including world
obstacles, etc. The only really special code worth looking at in the upcoming
example is the Update() method of the CrowdEntity class, which implements the few
current steering behaviors:

void CrowdEntity::Update(float deltaTime)

{

const float ENTITY_INFLUENCE_RADIUS = 3.0f;

const float NEIGHBOR_REPULSION = 5.0f;

const float ENTITY_SPEED = 2.0f;

const float ENTITY_SIZE = 1.0f;

//Force toward goal

D3DXVECTOR3 forceToGoal = m_goal - m_position;

//Has goal been reached?

if(D3DXVec3Length(&forceToGoal) < ENTITY_INFLUENCE_RADIUS)

{

//Pick a new random goal

m_goal = GetRandomLocation();

}

D3DXVec3Normalize(&forceToGoal, &forceToGoal);

//Get neighbors

vector<CrowdEntity*> neighbors;

m_pCrowd->GetNeighbors(this,

ENTITY_INFLUENCE_RADIUS,

neighbors);

//Avoid bumping into close neighbors

D3DXVECTOR3 forceAvoidNeighbors(0.0f, 0.0f, 0.0f);

for(int i=0; i<(int)neighbors.size(); i++)

{

D3DXVECTOR3 toNeighbor;

toNeighbor = neighbors[i]->m_position - m_position;

float distToNeighbor = D3DXVec3Length(&toNeighbor);

toNeighbor.y = 0.0f;

float force = 1.0f-(distToNeighbor / ENTITY_INFLUENCE_RADIUS);

forceAvoidNeighbors += -toNeighbor * NEIGHBOR_REPULSION*force;

//Force move intersecting entities

if(distToNeighbor < ENTITY_SIZE)

Chapter 13 Crowd Simulation 307

{

D3DXVECTOR3 center = (m_position +

neighbors[i]->m_position) * 0.5f;

D3DXVECTOR3 dir = center - m_position;

D3DXVec3Normalize(&dir, &dir);

//Force move both entities

m_position = center - dir * ENTITY_SIZE * 0.5f;

neighbors[i]->m_position = center + dir*ENTITY_SIZE*0.5f;

}

}

//Sum up forces

D3DXVECTOR3 acc = forceToGoal + forceAvoidNeighbors;

D3DXVec3Normalize(&acc, &acc);

//Update velocity & position

m_velocity += acc * deltaTime;

D3DXVec3Normalize(&m_velocity, &m_velocity);

m_position += m_velocity * ENTITY_SPEED * deltaTime;

//Update animation

m_pAnimController->AdvanceTime(deltaTime, NULL);

}

There is a very simple “move-toward-goal” logic implemented in this function.
As long as the goal is out of reach, a force toward the goal is calculated. Once the
goal is within reach of the entity, a new goal is just created at random (note that this
is where you would implement a more advanced goal/path finding scheme). This
function also implements a simple separation of neighbor repulsion scheme that
makes the entities avoid each other (as best they can). However, having the simple
separation rule (covered in the earlier section) is in itself not enough. I’ve also
added a hard condition (similar to the way the springs pushed two particles apart
in Chapter 6) that forcibly moves two entities apart should they get too close to
each other. As an end note I also update the animation controller of the entities,
making them seemingly move with a walk animation.

308 Character Animation with Direct3D

SMART OBJECTS

So far your crowd still looks more or less like a bunch of ants milling around
seemingly without purpose. So what is it that makes a crowd agent look and
behave like a part of the environment? Well, mostly any interaction your agent
does with the environment makes the agent seem “aware” of its environment
(even though this is seldom the case).

One way of implementing this is to distribute the object interaction logic to the
actual objects themselves. This has been done with great success in, for example,

EXAMPLE 13.2

Example 13.2 implements a simple crowd simulation that is basically an
extension of the earlier flocking algorithm. Pay attention to the hard spatial

requirements of the individual entities as well as the possibility for individual goals.

If you notice that the example is running at a too low frame rate, you may
need to decrease the amount of entities in your crowd.

Chapter 13 Crowd Simulation 309

the Sims™ series. The objects contain information about what the object does and
how the agent should interact with it. In a simple crowd simulation this could
mean that the agent plays a certain animation while standing in range of the object.
I’ll demonstrate this idea with a simple example of an environment obstacle. The
obstacle will take up some certain space in the environment. The agents should
then avoid bumping into these obstacles. The Obstacle class is defined as follows:

class Obstacle

{

public:

Obstacle(D3DXVECTOR3 pos, float radius);

D3DXVECTOR3 GetForce(CrowdEntity* pEntity);

void Render();

public:

static ID3DXMesh* sm_cylinder;

D3DXVECTOR3 m_position;

float m_radius;

};

The Obstacle class has a GetForce() function that returns a force pushing
crowd entities away from it. Of course you can make your objects take complete
control over crowd agents and not just add a force. For example, if you ever have
to implement an elevator it would make sense that the elevator takes control of the
agent as long as the agent is in the elevator. Nevertheless, here’s the GetForce()
function of the Obstacle class:

D3DXVECTOR3 Obstacle::GetForce(CrowdEntity* pEntity)

{

D3DXVECTOR3 vToEntity = m_position - pEntity->m_position;

float distToEntity = D3DXVec3Length(&vToEntity);

//Affected by this obstacle?

if(distToEntity < m_radius * 3.0f)

{

D3DXVec3Normalize(&vToEntity, &vToEntity);

float force = 1.0f - (distToEntity / m_radius * 3.0f);

return vToEntity * force * 10.0f;

}

return D3DXVECTOR3(0.0f, 0.0f, 0.0f);

}

310 Character Animation with Direct3D

This function simply works like a simple force field, pushing away agents in
its vicinity with a pretty strong force. This force is simply added to the steering
behaviors of the crowd entity. Next, I’ll show you how to have the crowd entities
follow a mesh, such as a terrain.

FOLLOWING A TERRAIN

To follow a terrain mesh you need to sample the height of the terrain at the current
position of your agent. This can be done in many different ways, mostly depending
on what kind of terrain/environment you have. If, for example, you are having an
outside terrain generated from a height map, it is probably better to query this height
from the height map rather than querying the terrain mesh. In this example I’ll use
the suboptimal mesh querying, foremost because there’s no advanced terrain
representation in place, and secondly because that will introduce the D3DXIntersect()
function that you will need to use in the next chapter anyway. This function is defined
as follows:

HRESULT D3DXIntersect(

LPD3DXBASEMESH pMesh, //Mesh to query

CONST D3DXVECTOR3 * pRayPos, //Ray origin

CONST D3DXVECTOR3 * pRayDir, //Ray direction

BOOL * pHit, //Does the ray hit the mesh?

DWORD * pFaceIndex, //Which face index was hit?

FLOAT * pU, //Hit U coordinate

FLOAT * pV, //Hit V coordinate

FLOAT * pDist, //Distance to hit

LPD3DXBUFFER * ppAllHits, //Buffer with multiple hits

DWORD * pCountOfHits //Number of hits

);

This function can be used to get the results from a Ray-Mesh intersection test.
The pHit pointer will point to a Boolean that contains true or false depending on
whether or not the mesh was hit by the ray. If the mesh is intersecting the ray, the
pFaceIndex, pU, pV, and pDist pointers will fill their respective variables with the
information from the hit closest to the ray origin. In most cases you’re only interested
in the hit closest to the ray origin, but sometimes you also want to know where the ray
exited the mesh, etc. If so, you can access all hits/intersection locations of the mesh
with the ppAllHits buffer.

You can use this function to place a character on the environment, such as in
Figure 13.5.

Chapter 13 Crowd Simulation 311

Creating the ray to test against the terrain mesh is a simple task. Simply take the
X and Z coordinate of your character and set the Y coordinate to an arbitrary num-
ber greater than the highest peak of the terrain (should your ray origin be lower than
the terrain at the testing point, your intersection test will fail). When successful you
get the distance to the terrain mesh from the D3DXIntersect() function. Then, to get
the height of the terrain at the testing point, you simply add this intersection distance
to the Y coordinate of the ray origin. The new SetEntityGroundPos() function in the
Crowd class adjusts the position to follow the terrain:

void Crowd::SetEntityGroundPos(D3DXVECTOR3 &pos)

{

//Create the test ray

D3DXVECTOR3 org = pos + D3DXVECTOR3(0.0f, 10.0f, 0.0f);

D3DXVECTOR3 dir = D3DXVECTOR3(0.0f, -1.0f, 0.0f);

BOOL Hit;

DWORD FaceIndex;

FLOAT U;

FLOAT V;

FLOAT Dist;

//Floor-ray intersection test

D3DXIntersect(m_pFloor->m_pMesh,

&org,

&dir,

&Hit,

&FaceIndex,

&U,

&V,

FIGURE 13.5
Placing a character on the terrain.

312 Character Animation with Direct3D

&Dist,

NULL,

NULL);

if(Hit)

{

//Adjust position according to the floor height

pos.y = org.y - Dist;

}

}

EXAMPLE 13.3

In this final example (although simple) the potential and power of crowd
simulation built upon steering behaviors is shown. In this example the Crowd

class governs the terrain mesh and the obstacles. However, in a real-life application you
would probably have a “World” class or “Terrain” class govern these instead.

Chapter 13 Crowd Simulation 313

CONCLUSIONS

This chapter provided a brief glimpse into the subject of crowd simulation. The
code provided with this chapter will hopefully provide a good base for your own
expansions. Start with something as simple as the three Boid steering behaviors, to
which you can easily add more and more specific steering behaviors to get your
desired result.

Crowd simulation can be used for both enemy and NPC steering and is currently
one of the best options for controlling a large mass of characters. You can pretty
much take all of what you’ve learned so far in the book and apply it to your crowd
agents, ragdoll, inverse kinematics, facial animation, and more.

CHAPTER 13 EXERCISES

Implement a more efficient way of finding the nearest neighbors of a flock or
crowd entity. (Tip: Look into KD-trees.)
Implement a Prey class that takes the roll of a predator hunting the poor Boids.
Make the prey attack and devour Boids within a small attack radius. Also, make
all the Boids flee the predator at all costs.
Implement a path-finding algorithm (such as A-star, Djikstra’s, or similar) and
use this to guide your agents through a complex environment while using the
crowd steering behaviors to resolve collisions, etc.
Implement non-constant speed in the crowd simulation, making it possible for
entities to pause if they’re temporarily blocked by another entity. Also, be sure
to switch the animation in this case to the still animation.
Create a smart object that makes a crowd entity stop and salute the object before
continuing its milling around.
Create a leader agent that the other crowd entities follow.

FURTHER READING

Sakuma, Takeshi et al., “Psychology-Based Crowd Simulation.” Available online at:
http://www.val.ics.tut.ac.jp/project/crowd/, 2005.

Sung, Mankyu, “Scalable behaviors for crowd simulation.” Available online at:
http://www.cs.wisc.edu/graphics/Papers/Gleicher/Crowds/crowd.pdf, 2004.

http://www.val.ics.tut.ac.jp/project/crowd/
http://www.cs.wisc.edu/graphics/Papers/Gleicher/Crowds/crowd.pdf

This page intentionally left blank

315

Character Decals14

This chapter touches on another cousin of character animation: character decals!
This is a somewhat obscure topic that also can be quite hard to find tutorials about
online—even though it has been around since some of the first 3D games. Applying
decals to geometry in your scene is a concrete problem you will be faced with at some
point if you ever try to make a game in which guns or similar things are fired. In this
chapter I’ll cover everything from the history of decals to how to add decals to your
animated characters.

316 Character Animation with Direct3D

Decals in games
Picking a hardware-rendered mesh
Creating decal geometry
Calculating decal UV coordinates

INTRODUCTION TO DECALS

Like many other techniques in computer graphics, the concept of decals has its
roots in the real world. The word decal is defined as follows:

“A design or picture produced in order to be transferred to another surface
either permanently or temporarily.”

Or,

“A decorative sticker.”
-Wikipedia

A decorative sticker…that pretty much sums it up nicely. In games, decals are used
to decorate otherwise plain surfaces or add more detail. Simple decals are implemented
as a small quad with an alpha-blended texture on it that is placed exactly on the plane
of the wall to which it is supposed to “stick.” The decal is then rendered as usual after
the wall. In Direct3D the default Z buffer test is to allow anything with less Z value or
equal through. Since the decal is at the exact same Z distance as the wall behind it, the
decal will be painted on top of the wall (but more on this later on). Figure 14.1 shows
a basic 3D scene with some decals applied.

To implement this scene without the use of decals would require an unnecessary
amount of texture memory. Figure 14.2 shows the scene in Figure 14.1 wireframe
rendered.

As you can see, there’s a lot of texture memory saved by not having to put these
extra details (posters, bullet holes, etc.) in the base texture. On top of preserving
texture memory, there is another very important aspect of decals—you are able to
add these decals dynamically to the game. Decals have been around since some of
the very first 3D games.

Chapter 14 Character Decals 317

FIGURE 14.1
A 3D example scene.

FIGURE 14.2
Wireframe rendering of the scene in Figure 14.1.

318 Character Animation with Direct3D

The most common usage of decals is to add bullet holes to the walls. These are
put there as a result of the player firing a gun. Adding decals to a static scene is a
relatively easy task, especially if all the walls and floors, etc,. are planar surfaces.
Then, all you need to do is calculate the plane of the surface and add your decal
quad to this plane and render away.

However, with characters you don’t really have the luxury of planar surfaces.
You also have to deal with the fact that your characters are skinned meshes that
move around. Decals have to “stick” to their base surface. Otherwise, you will
have lots of flickering as a result of Z-fighting, or decals that seem detached from
the character—either way, the illusion is broken. So in order to create and render
decals on a character, there are five steps you need to take:

1. Pick the triangle on the character through which a ray intersects.
2. Grow the selection of triangles until you have a large enough surface to fit

the decal.
3. Calculate new UV coordinates for the decal mesh.
4. Copy the skinning information (blending weights and blending indices) to

the decal mesh.
5. Render the decal as any other bone mesh (with the small exception of using

clamped UV).

OK, now it’s time to get down to the nitty-gritty and start looking at the im-
plementation.

PICKING A HARDWARE-RENDERED MESH

Picking is another name for a collection of ray intersection tests. A ray is usually
made up of two 3D vectors—an origin and a direction. The most common exam-
ple is a ray in your 3D world that is calculated from the position of your mouse (in
screen space)—something you have probably come across in an introductory book
on 3D graphics. In this chapter I won’t cover how the mouse ray is calculated;
rather, I’ll stick to the general case of having any arbitrary ray in world space and
using it to paint a decal on a character.

There are several ray intersection tests that may prove useful when you write
your game code. The most common ray intersection tests are ray-bounding box,
ray-bounding sphere, ray-plane, and finally, the ray-mesh intersection test. You can
(and should) use the cheaper bounding volume intersection tests before using the
more expensive ray-mesh intersection test. However, I leave such optimizations up
to you.

The following D3DX functions implement the ray intersection tests with the box
and sphere bounding volume as well as the plane:

BOOL D3DXBoxBoundProbe(

CONST D3DXVECTOR3 *pMin,

CONST D3DXVECTOR3 *pMax,

CONST D3DXVECTOR3 *pRayPosition,

CONST D3DXVECTOR3 *pRayDirection

);

BOOL D3DXSphereBoundProbe(

CONST D3DXVECTOR3 *pCenter,

FLOAT Radius,

CONST D3DXVECTOR3 *pRayPosition,

CONST D3DXVECTOR3 *pRayDirection

);

D3DXVECTOR3 * D3DXPlaneIntersectLine(

D3DXVECTOR3 *pOut,

CONST D3DXPLANE *pP,

CONST D3DXVECTOR3 *pV1,

CONST D3DXVECTOR3 *pV2

);

For the first two functions, all you have to do is supply the dimensions of the
bounding volumes along with your ray postion (aka the ray origin) and your
ray direction. You will get a simple Boolean telling you whether or not the ray
intersected the volume.

Note that the plane intersection test works a bit differently. It takes the beginning
and the end point of the ray/line you wish to test and returns the point where the line
intersects the plane.

The ray-mesh test I will use for finding the place where a ray intersects with our
character is implemented in the D3DX library in the little bit more advanced D3DX-
Intersect() function:

HRESULT D3DXIntersect(

LPD3DXBASEMESH pMesh, //Mesh to test

CONST D3DXVECTOR3 * pRayPos, //Ray origin

CONST D3DXVECTOR3 * pRayDir, //Ray direction

BOOL * pHit, //Did the ray hit or not?

DWORD * pFaceIndex, //Index of triangle which was hit

FLOAT * pU, //Barycentric U coordinate of hit

Chapter 14 Character Decals 319

FLOAT * pV, //Barycentric V coordinate of hit

FLOAT * pDist, //Distance to hit (from ray origin)

LPD3DXBUFFER * ppAllHits, //List of all hits

DWORD * pCountOfHits //Number of hits

);

In addition to testing the ray and the mesh, there are also a lot of pointers to
data containers that you need to pass to this function. The pHit will write a Boolean
telling whether or not the ray hit the mesh. Sometimes this is all the information
you are interested in—for example, when you want to just select a 3D object with
the mouse. For creating decals, however, you need all the information this function
returns: face index, barycentric coordinates of the hit (more on this later), and the
distance to the hit. A ray may also hit a mesh in more than just one place, as shown
in Figure 14.3.

If you want all the hits, you can get these from the ppAllHits buffer (which has
pCountOfHits number of hits). The information for each of these hits is stored with
the D3DXINTERSECTINFO structure:

320 Character Animation with Direct3D

FIGURE 14.3
A ray intersecting a mesh.

Chapter 14 Character Decals 321

struct D3DXINTERSECTINFO {

DWORD FaceIndex;

FLOAT U;

FLOAT V;

FLOAT Dist;

}

So, returning to the problem at hand…. The D3DXIntersect() function takes
a pointer to a mesh on which you want to run your ray-mesh intersection test.
However, since I’m using hardware-skinned characters in this book (and which in
all likelihood you will be using as well in real-life applications), there’s only the
original mesh available for testing. Figure 14.4 shows this dilemma.

Doing this intersection test with a software-skinned character wouldn’t be a
problem because you have the actual skinned mesh stored in memory as opposed
to being skinned on-the-fly as is the case with hardware-skinned characters. Despite
this obvious flaw of not having the final skinned mesh in memory, there are a few
different ways you can still perform ray intersection tests on a hardware-skinned
character. Figure 14.5 shows one of the most common ways of doing this.

FIGURE 14.4
Intersecting a hardware-skinned character.

322 Character Animation with Direct3D

Since using bounding volumes for the different bones may be something an
engine already supports, for example, for ragdolls, this is a popular way to do
character intersection tests. All you need to do then is transform the ray from
world space to the local space of the bone in question and perform a simple ray-
bounding volume test. Once you’ve found a bone that the ray intersects with you
can use a variety of techniques to pick a good spot for your decal on the mesh.

I’ll use a somewhat more straightforward, albeit not so efficient, method of
getting the intersection data I need. I’ll simply take the original mesh (which I
happened to have stored away in the BoneMesh class) and perform a software skin-
ning to a temporary mesh in memory. Then I use the D3DXIntersect() function
on this temporary mesh to get the data I need before releasing it.

I will add most of this new decal functionality to the BoneMesh class, since this
class extends D3DXMESHCONTAINER and contains the skinning information, original
mesh, etc. The following GetFace() function in the BoneMesh class returns the
intersection data of a hardware- (or software) skinned model intersecting with the
provided ray (origin + direction):

FIGURE 14.5
Bone bounding volumes.

Chapter 14 Character Decals 323

D3DXINTERSECTINFO BoneMesh::GetFace(

D3DXVECTOR3 &rayOrg,

D3DXVECTOR3 &rayDir)

{

D3DXINTERSECTINFO hitInfo;

//Must test against software-skinned model

if (pSkinInfo != NULL)

{

//Make sure vertex format is correct

if(OriginalMesh->GetFVF() != Vertex::FVF)

{

hitInfo.FaceIndex = 0xffffffff;

return hitInfo;

}

//Set up bone transforms

int numBones = pSkinInfo->GetNumBones();

for(int i=0;i < numBones;i++)

{

D3DXMatrixMultiply(¤tBoneMatrices[i],

&boneOffsetMatrices[i],

boneMatrixPtrs[i]);

}

//Create temp mesh

ID3DXMesh *tempMesh = NULL;

OriginalMesh->CloneMeshFVF(D3DXMESH_MANAGED,

OriginalMesh->GetFVF(),

g_pDevice,

&tempMesh);

//Get source and destination buffer

BYTE *src = NULL;

BYTE *dest = NULL;

OriginalMesh->LockVertexBuffer(D3DLOCK_READONLY,

(VOID**)&src);

tempMesh->LockVertexBuffer(0,

(VOID**)&dest);

//Perform the software skinning

pSkinInfo->UpdateSkinnedMesh(currentBoneMatrices,

NULL,

src,

dest);

324 Character Animation with Direct3D

//Unlock buffers

OriginalMesh->UnlockVertexBuffer();

tempMesh->UnlockVertexBuffer();

//Perform the intersection test

BOOL Hit;

D3DXIntersect(tempMesh,

&rayOrg,

&rayDir,

&Hit,

&hitInfo.FaceIndex,

&hitInfo.U,

&hitInfo.V,

&hitInfo.Dist,

NULL,

NULL);

//Release temporary mesh

tempMesh->Release();

if(Hit)

{

//Successful hit

return hitInfo;

}

}

//No hit

hitInfo.FaceIndex = 0xffffffff;

hitInfo.Dist = -1.0f;

return hitInfo;

}

As you can see, this function returns a D3DXINTERSECTINFO object containing all
the necessary intersection info. Should the ray completely miss the character, then
the FaceIndex (a DWORD variable) will be set to 0xffffffff (the maximum value of a
DWORD). This is also the default invalid value for DWORDs used by the DirectX API.

Chapter 14 Character Decals 325

CREATING DECAL GEOMETRY

In the previous section you learned how to find which triangle of a character that a
certain ray intersects with (even if the character happens to be hardware skinned).
The next problem that follows is how you calculate which surrounding triangles
should be selected for the decal mesh (remember that the decal is, in most cases,
larger than the average triangle on your character). Again, there are a few different
approaches to this, and as always they have varying accuracy and efficiency. The
brute force approach would be to test all triangles of the entire character and select
those inside the decal test volume (which could be calculated as a sphere around the

EXAMPLE 14.1

Example 14.1 implements the GetFace() function of the BoneMesh class. It
also does some temporary drawing in the SkinnedMesh class to visualize

the triangle of the original mesh that gets hit. Note that the skinned character in this
example is completely hardware skinned. Pay attention to how the triangle hit by the
ray changes in the original mesh as the hardware-skinned character is animated or
the ray moves.

326 Character Animation with Direct3D

hit position with a radius of the decal size). The problem with this approach,
however, is quite obvious: not only will it be quite slow (especially for characters
with tens of thousands of triangles), but it also has the potential to include lots of
unnecessary triangles, as shown in Figure 14.6.

As you can see in Figure 14.6, the ray hits the front of the character’s leg. Since
the decal size is larger than the leg itself, it will end up selecting polygons on the
backside of the leg, which is something you’d like to avoid. This will happen as long
as the decal size is larger than the thickness of the body part being tested (and note
that the polygons don’t even have to be adjacent when selected with this method).
So when a decal is added to the front of the character’s torso, there might be some
polygons added on the back as well. So, even though the brute force method would
work, let’s try a better one.

It is quite easy to calculate the adjacency information of a mesh (information
of which triangles share which edges). The adjacency information of a mesh
can be calculated using the following D3DX library function defined in the
ID3DXBaseMesh class:

FIGURE 14.6
The problem with brute force selection of the decal mesh.

Chapter 14 Character Decals 327

HRESULT GenerateAdjacency(

FLOAT Epsilon,

DWORD * pAdjacency

);

This function returns a list of indices containing the information of which faces
are adjacent to each other. Any vertices closer to each other than the Epsilon variable
will be treated as coincident. The resulting adjacency data will be written to the
pAdjacency pointer. An example mesh with its calculated adjacency information is
shown in Figure 14.7.

In Figure 14.7 there’s an example mesh consisting of four triangles (numbered
1 to 4). The adjacency information consists of double words (DWORD). If a certain
edge of a triangle doesn’t have a neighboring triangle, this slot will be filled with the
value 0xffffffff. The neighbors can then be extracted in code like this:

FIGURE 14.7
Four example triangles.

328 Character Animation with Direct3D

//Extract adjancency info from mesh

DWORD* adj = new DWORD[numFaces * 3];

pSomeMesh->GenerateAdjancency(0.01f, adj);

DWORD someTriangle = 32;

//Get neighbors of “someTriangle”

DWORD neighbor1 = adj[someTriangle * 3 + 0];

DWORD neighbor2 = adj[someTriangle * 3 + 1];

DWORD neighbor3 = adj[someTriangle * 3 + 2];

With the adjacency information you can start from the triangle that was hit and
do a simple flood-fill to create the decal mesh. The neighbors of the triangle that
was hit are added to an open list and evaluated in turn. If these faces, in turn, have
neighboring meshes within the decal radius, these are also added to the open list
(unless they already are in the list). Even if you use a bounding sphere around the
decal hit position, this will generate much better decal meshes than the brute force
approach since it requires the triangles to be connected.

CALCULATING THE EXACT HIT POSITION

The next thing you need to calculate is the location of the ray hit. You will need to
use this location to create the bounding sphere with which you test any neighboring
triangles. It is quite easy to calculate the exact hit position of the ray in world space
since you have the ray origin, ray direction, and the distance to the hit. The world
space hit location can then be calculated easily:

D3DXVECTOR3 hitPos = rayOrg + rayDir * distToHit;

The problem with using the hit location in world space is that it may not
correspond well to the original mesh since the character is skinned. This means
that the triangles in the character are affected by bone transformations and are
therefore moved, rotated, stretched, etc.

Instead, you must calculate the hit position of the ray in the local space of the
original un-skinned mesh character. An easy way to do this would be to take the
center of the triangle that was hit (the hit index will be the same in both the skinned
character as in the original mesh). This is easy to do since you can access the vertex
information of the three triangle corners. The triangle center would probably work
well enough if your character has a detailed enough mesh. However, I think we can
do one better in this matter as well.

Chapter 14 Character Decals 329

A more detailed hit position (in the un-skinned mesh local space) can be calcu-
lated using the UV barycentric coordinates given to you from the D3DXIntersect()
function. Consider the triangle in Figure 14.8.

Given any arbitrary barycentric coordinates (u and v), any point (p) on this
triangle (A, B, C) can be described as:

p = A + u(B�A)+ v(C�A)

Try, in your head, to calculate the barycentric coordinate of a few points on the
triangle in Figure 14.8. After just trying a few points you’ll realize the truth that any
given point on a triangle can be described using only two barycentric coordinates,
regardless of the shape of the triangle. The simple formula above is also implemented
by the following D3DX library function:

D3DXVECTOR3 * D3DXVec3BaryCentric(

D3DXVECTOR3 * pOut, //Resulting point on triangle

CONST D3DXVECTOR3 * pV1, //Corner 1 (A)

CONST D3DXVECTOR3 * pV2, //Corner 2 (B)

CONST D3DXVECTOR3 * pV3, //Corner 3 (C)

FLOAT f, //Barycentric U coordinate

FLOAT g //Barycentric V coordinate

);

FIGURE 14.8
An example triangle with corners A,
B, and C.

330 Character Animation with Direct3D

With the D3DXINTERSECTINFO object returned from the GetFace() function created
in the previous example, you can easily extract the vertices of the triangle hit by the
ray. Then, feed them into the D3DXVec3BaryCentric() function together with the
barycentric coordinates of the hit. Out comes the exact hit position of the ray in the
un-skinned character’s local space (which is the space in which all the vertex positions
are stored).

SELECTING TRIANGLES FOR THE DECAL MESH

Before I cover the code on how to create the decal mesh there is one more issue to
discuss. When you create the decal mesh you must ensure that all affected triangles
are added to the decal mesh. The idea is to do a flood-fill of triangles out from the
triangle that was hit by the ray and stop once you’ve selected a large enough submesh
to “house” the decal. With each triangle you test you can extract the three corners
(i.e., mesh vertices) and test against the decal testing volume. However, this brings
us to the following problem described in Figure 14.9.

Here, the problem becomes apparent if you only test the vertices of the trian-
gle against the bounding sphere. As you can see, the bounding sphere intersects the
triangle but misses all of the triangle vertices. This will lead to the triangle not
being included in the decal mesh, which in turn can give your decal a visual artifact

FIGURE 14.9
A simplified sphere-triangle test.

Chapter 14 Character Decals 331

(making it look like a piece of the decal is missing). Again, there are many different
ways to handle this. One easy way to solve this would be to calculate the bounding
sphere of the triangle itself and use a sphere–sphere intersection test to determine
whether the triangle should be included. Alas, this approach often results in too
many triangles being selected, with large triangles having a much larger chance of
being selected. So the simple solution is just to increase the testing radius of the
decal bounding sphere. This will, of course, have to be increased with a magical
number differing from character to character. In most cases a simple 10%–20%
increase should do it. Again, there are more accurate ways to go about this, but in
the end, we’re not calculating the trajectories of a ballistic missile here. Feel free to
spend time on perfecting the solution to this problem though.

COPYING THE SKINNING INFORMATION

Finally, you’ve come to the point where you need to create the actual decal mesh
using the subset of triangles selected using the techniques covered in the previous
sections. However, I’ve been talking a lot about the original mesh of the character
and how you need to select the triangles to use for the decal mesh from this origi-
nal mesh. Now that the time has come to actually copy the selected submesh and
create the new decal mesh, there is one more important thing to consider—namely,
that of the skinning information. Since one of the basic problems you were faced
with when wanting to create decals for characters was that they are dynamic and
animated meshes, you need to make sure that your decals are also dynamic. The
decal needs to map exactly to the underlying character and follow the character’s
every move. For this to happen, the decal needs to also copy the skin information
of the skinned character (for the affected triangles only).

I must admit that the first time I approached this problem I took the long way
around. I created a new ID3DXSkinInfo object and manually copied over the skin-
ning data from the skin info object stored in the BoneMesh class to the new skin info
object of the decal mesh. Although this worked (and was a great exercise), it was also
completely unnecessary. However, if you’re ever faced with the prospect of copying
skinning information from one character to another, here’s the basic outline on
how to proceed:
1. Create a new ID3DXSkinInfo object using the D3DXCreateSkinInfo() or D3DX-

CreateSkinInfoFVF() function.
2. Use the ID3DXSkinInfo::GetBoneInfluence() function to retrieve the vertices

and weights from the source character.
3. Map bone influences to actual vertices (these are not the same) using the

ID3DXSkinInfo::GetBoneVertexInfluence() function.
4. Finally, write the newly created vertices and weights to the target skin info ob-

ject using the ID3DXSkinInfo::SetBoneInfluence() function.

332 Character Animation with Direct3D

Since you already have the finished index-blended mesh stored in the
BoneMesh class, you have all you need ready at your disposal. If you keep the bone
setup the same for the decal meshes as you do for the underlying skinned mesh,
you are actually saving a lot of unnecessary instructions, even though that might
seem confusing. Had you instead done like I first did and calculated a new skin
info object for the decal, you would have to recalculate the matrix palette and
upload it to the vertex shader for each decal you want to draw. Instead, it is better
just to keep the bone setup of the parent mesh and store all the decal meshes in a
list to be drawn after the base mesh using the same bone setup.

So, back to the issue at hand. You now have a list of faces selected from the
character mesh using some more or less accurate schemes. The next step is to cre-
ate a new decal mesh containing the right number of faces and vertices. This can be
done with the following D3DX function:

HRESULT D3DXCreateMesh(

DWORD NumFaces, //Num faces

DWORD NumVertices, //Num vertices

DWORD Options, //Creation/memory flags

CONST LPD3DVERTEXELEMENT9 * pDeclaration, //Vertex declaration

LPDIRECT3DDEVICE9 pD3DDevice, //Graphics device

LPD3DXMESH * ppMesh //Resulting mesh

);

Now you can lock the vertex or index buffer by this and the source mesh and
simply copy over the data. To make it easier to handle the data in a vertex buffer, for
example, it pays off to create a small vertex structure corresponding to the vertex
declaration. In the upcoming example I’ll use the following structure to handle an
index blended vertex:

struct DecalVertex{

D3DXVECTOR3 position;

Float blendweights;

Byte blendindices[4];

D3DXVECTOR3 normal;

D3DXVECTOR2 uv;

};

Note that it is very important that the layout of the information in this struc-
ture exactly corresponds to the layout of the information in the vertex declaration.
Especially important is that the size of your vertex structure corresponds to the size
of your mesh vertex. You can always check the size of your vertex in bytes using the
ID3DXBaseMesh::GetNumBytesPerVertex() function.

Chapter 14 Character Decals 333

Here now follows the giant code snippet that has been explained in this and the
previous sections. The upcoming CreateDecalMesh() function has been added to the
BoneMesh class to calculate a skinned decal mesh taking a ray origin, ray direction,
and decal size as parameters:

ID3DXMesh* BoneMesh::CreateDecalMesh(

D3DXVECTOR3 &rayOrg,

D3DXVECTOR3 &rayDir,

float decalSize)

{

//Only supports skinned meshes for now

if(pSkinInfo == NULL)

return NULL;

D3DXINTERSECTINFO hitInfo = GetFace(rayOrg, rayDir);

//No face was hit

if(hitInfo.FaceIndex == 0xffffffff)

return NULL;

//Generate adjacency lookup table

DWORD* adj = new DWORD[OriginalMesh->GetNumFaces() * 3];

OriginalMesh->GenerateAdjacency(0.001f, adj);

//Get vertex and index buffer of temp mesh

Vertex *v = NULL;

WORD *i = NULL;

OriginalMesh->LockVertexBuffer(D3DLOCK_READONLY, (VOID**)&v);

OriginalMesh->LockIndexBuffer(D3DLOCK_READONLY, (VOID**)&i);

//Calculate hit position on original mesh

WORD i1 = i[hitInfo.FaceIndex * 3 + 0];

WORD i2 = i[hitInfo.FaceIndex * 3 + 1];

WORD i3 = i[hitInfo.FaceIndex * 3 + 2];

D3DXVECTOR3 hitPos;

D3DXVec3BaryCentric(&hitPos,

&v[i1].position,

&v[i2].position,

&v[i3].position,

hitInfo.U,

hitInfo.V);

334 Character Animation with Direct3D

//Find adjacent faces within range of hit location

queue<WORD> openFaces;

map<WORD, bool> decalFaces;

//Add first face

openFaces.push((WORD)hitInfo.FaceIndex);

while(!openFaces.empty())

{

//Get first face

WORD face = openFaces.front();

openFaces.pop();

//Get triangle data for open face

WORD i1 = i[face * 3 + 0];

WORD i2 = i[face * 3 + 1];

WORD i3 = i[face * 3 + 2];

D3DXVECTOR3 &v1 = v[i1].position;

D3DXVECTOR3 &v2 = v[i2].position;

D3DXVECTOR3 &v3 = v[i3].position;

float testSize = max(decalSize, 0.1f);

//Should this face be added?

if(D3DXVec3Length(&(hitPos - v1)) < testSize ||

D3DXVec3Length(&(hitPos - v2)) < testSize ||

D3DXVec3Length(&(hitPos - v3)) < testSize ||

decalFaces.empty())

{

decalFaces[face] = true;

//Add adjacent faces to open queue

for(int a=0; a<3; a++)

{

DWORD adjFace = adj[face * 3 + a];

if(adjFace != 0xffffffff)

{

//Check that it hasn’t been added to decal faces

if(decalFaces.count((WORD)adjFace) == 0)

openFaces.push((WORD)adjFace);

Chapter 14 Character Decals 335

}

}

}

}

OriginalMesh->UnlockIndexBuffer();

OriginalMesh->UnlockVertexBuffer();

//Create decal mesh

ID3DXMesh* decalMesh = NULL;

//No faces to create decal with

if(decalFaces.empty())

return NULL;

//Create a new mesh from selected faces

D3DVERTEXELEMENT9 decl[MAX_FVF_DECL_SIZE];

MeshData.pMesh->GetDeclaration(decl);

D3DXCreateMesh((int)decalFaces.size(),

(int)decalFaces.size() * 3,

D3DXMESH_MANAGED,

decl,

g_pDevice,

&decalMesh);

//Lock dest & src buffers

DecalVertex* vDest = NULL;

WORD* iDest = NULL;

DecalVertex* vSrc = NULL;

WORD* iSrc = NULL;

decalMesh->LockVertexBuffer(0, (VOID**)&vDest);

decalMesh->LockIndexBuffer(0, (VOID**)&iDest);

MeshData.pMesh->LockVertexBuffer(D3DLOCK_READONLY, (VOID**)&vSrc);

MeshData.pMesh->LockIndexBuffer(D3DLOCK_READONLY, (VOID**)&iSrc);

//Iterate through all faces in the decalFaces map

map<WORD, bool>::iterator f;

int index = 0;

for(f=decalFaces.begin(); f!=decalFaces.end(); f++)

{

WORD faceIndex = (*f).first;

336 Character Animation with Direct3D

//Copy vertex data

vDest[index * 3 + 0] = vSrc[iSrc[faceIndex * 3 + 0]];

vDest[index * 3 + 1] = vSrc[iSrc[faceIndex * 3 + 1]];

vDest[index * 3 + 2] = vSrc[iSrc[faceIndex * 3 + 2]];

//Create indices

iDest[index * 3 + 0] = index * 3 + 0;

iDest[index * 3 + 1] = index * 3 + 1;

iDest[index * 3 + 2] = index * 3 + 2;

index++;

}

//Unlock buffers

decalMesh->UnlockIndexBuffer();

decalMesh->UnlockVertexBuffer();

MeshData.pMesh->UnlockIndexBuffer();

MeshData.pMesh->UnlockIndexBuffer();

return decalMesh;

}

This code performs all the steps covered so far about how to create the decal
mesh. There is nothing really difficult about this piece of code that requires more
explaining. The one thing I could mention is the way I do the flood-fill out from the
triangle hit by the ray. I create one queue of faces that needs to be considered for the
decal mesh called openFaces. I also create a map of faces that have been selected
to be included in the decal mesh called decalFaces. The reason for having a map
instead of a regular vector is that it is quicker to look up whether or not a certain
face has already been added to the set of decal faces using a map. If a face is added
to the decalFaces map, I also add the neighbors of this face to the openFaces queue
for future consideration. Once the openFaces queue is empty, I know that all
connected faces within the decal size radius have been considered and no time has
been wasted on unnecessary faces.

Chapter 14 Character Decals 337

THE CHARACTERDECAL CLASS

To store and render the decal, I’ve created a very simple class called CharacterDecal.
The class is defined very simply as follows:

class CharacterDecal

{

public:

CharacterDecal(ID3DXMesh* pDecalMesh);

~CharacterDecal();

void Render();

public:

ID3DXMesh* m_pDecalMesh;

};

Note that to this class you can add all sorts of information needed to vary your
decals. The most obvious addition is that of individual textures for your decals. You
can create a lot of variation by simply having a vector of different textures from
which you randomly assign a texture once a new decal is created. Other things you
can add are varying alpha value or color information, which you can pass to the
decal vertex and pixel shader. I’ve also added a vector of CharacterDecal objects to
the BoneMesh class, which will be rendered after the bone mesh itself has been
rendered (remember not to change the matrix palette between rendering the bone
mesh and its decals). I’ve also added an AddDecal() function to the SkinnedMesh
class that takes a ray origin and a ray direction as parameters. This function finds
one or more bone meshes that intersect the ray, creates a CharacterDecal mesh, and
adds it to the list stored in the BoneMesh object.

338 Character Animation with Direct3D

Note that there are plenty of optimizations you can do to the selection of the
decal mesh. An obvious optimization is, of course, to pre-compute as much as
possible. One easy example of something that could be pre-computed is the
adjacency information for the character mesh (since this is valid for all instances
of a character and will be used multiple times).

Also, I’ve been using a bounding sphere to test which faces and vertices should
be included in the decal mesh. Although this is accurate enough, it is still just a
simplification, as shown in Figure 14.10.

EXAMPLE 14.2

Time again for an example. In this example the first skinned decals can be
applied to the character as he is being animated. You aim and “shoot”

decals by moving the mouse and pressing the left mouse button, respectively. Pay
special attention also to how the decals at the joints of the character are animated.
The decal meshes are rendered in this example as green wireframe meshes overlaid
on the character, which should make it easy to see which faces were selected for a
certain hit location.

Chapter 14 Character Decals 339

I am then comparing the distance from the ray hit position to the vertex positions
as a straight line when I really should be comparing the distance over the mesh.
Implementing this, though, takes some more work and is again something I leave for
you to do on a rainy day when you’ve run out of more sensible things to do.

CALCULATING DECAL UV COORDINATES

The hard part is behind you. You got a skinned decal mesh attached to the character
and you have a way of adding these to a character. The last remaining piece of the
puzzle is to calculate the UV coordinates of the decal mesh and then render it. Figure
14.11 shows an image of a run-of-the-mill decal texture.

FIGURE 14.10
The real distance between a vertex and the hit point.

340 Character Animation with Direct3D

The most important thing about the decal texture is that all the edges are 100%
transparent. If not, any pixel on the edge will be stretched out when applied to the
decal mesh. This is because you will be rendering the decal mesh with clamped UV
coordinates (i.e., clamped to the range of zero to one). Figure 14.12 shows how
you’ll apply the decal texture to the decal mesh.

The dotted square represents the area that will be covered by the decal texture.
Note the UV coordinates for the virtual square corners. The area outside the texture
will be rendered completely transparent (since the edge pixels of the decal texture
will be stretched). Because there aren’t actually any vertices placed exactly where
you want the decal to go, you have to calculate the UV coordinates of all the other
vertices in the decal mesh so that the UV coordinates for the virtual decal square
corners form the square shown in Figure 14.12.

To do this you take the normal of the triangle hit by the ray and use it to create
an up and right vector. First, you set the up vector to point straight up in the world
(for example), and then you calculate the right vector as the cross product between
the triangle normal and the up vector. Finally, you recalculate the up vector as the
cross product between the right vector and the triangle normal.

FIGURE 14.11
Decal texture with alpha (alpha visualized with square pattern).

Chapter 14 Character Decals 341

D3DXVECTOR3 up(0.0f, 1.0f, 0.0f);

D3DXVECTOR3 right;

//Calculate the right vector

D3DXVec3Cross(&right, &faceNormal, &up);

D3DXVec3Normalize(&right, &right);

//Calculate up vector

D3DXVec3Cross(&up, &faceNormal, &right);

D3DXVec3Normalize(&up, &up);

With these two vectors we can calculate the following vectors:

D3DXVECTOR3 decalCorner, UCompare, VCompare;

decalCorner = (hitPos - right * decalSize - up * decalSize);

UCompare = -right * decalSize * 2.0f;

VCompare = -up * decalSize * 2.0f;

FIGURE 14.12
Calculating the UV coordinates for the decal mesh.

342 Character Animation with Direct3D

These vectors are shown and explained in Figure 14.13.

Now, to calculate the UV coordinates of all the vertices in the decal mesh, you
simply take the difference between the vertex position and the decal corner. Then,
project the X coordinate of this delta vector to the UCompare vector and vice versa with
the Y coordinate and the VCompare vector. In other words, the UV coordinates of the
vertices are projected to the plane of the decal. I’ve added the CalculateDecalUV()
function to the BoneMesh class, which will calculate the decal UV coordinates based on
the hit position of the ray:

void BoneMesh::CalculateDecalUV(

ID3DXMesh* decalMesh,

D3DXVECTOR3 &hitPos,

float decalSize)

{

DecalVertex *v = NULL;

decalMesh->LockVertexBuffer(0, (VOID**)&v);

//Get hit normal (first 3 vertices make up the hit triangle)

DecalVertex &v1 = v[0];

FIGURE 14.13
Decal mesh with decal corner, U and V compare vectors.

Chapter 14 Character Decals 343

DecalVertex &v2 = v[1];

DecalVertex &v3 = v[2];

D3DXVECTOR3 faceNormal = (v1.normal +

v2.normal +

v3.normal) / 3.0f;

D3DXVec3Normalize(&faceNormal, &faceNormal);

//Calculate Right & Up vector

D3DXVECTOR3 up(0.0f, 1.0f, 0.0f);

D3DXVECTOR3 right;

D3DXVec3Cross(&right, &faceNormal, &up);

D3DXVec3Normalize(&right, &right);

D3DXVec3Cross(&up, &faceNormal, &right);

D3DXVec3Normalize(&up, &up);

D3DXVECTOR3 decalCorner, UCompare, VCompare;

decalCorner = (hitPos - right * decalSize - up * decalSize);

UCompare = -right * decalSize * 2.0f;

VCompare = -up * decalSize * 2.0f;

//Loop through vertices in mesh and calculate their UV coordinates

for(int i=0; i<(int)decalMesh->GetNumVertices(); i++)

{

D3DXVECTOR3 cornerToVertex = decalCorner - v[i].position;

float U = D3DXVec3Dot(&cornerToVertex, &UCompare) /

(decalSize / 4.0f);

float V = D3DXVec3Dot(&cornerToVertex, &VCompare) /

(decalSize / 4.0f);

//Assign new UV coordinate to the vertex

v[i].uv = D3DXVECTOR2(U, V);

}

decalMesh->UnlockVertexBuffer();

}

That’s it. The decal mesh now has had its UV coordinates recalculated to
accommodate the decal texture. To render the decal, you’ll also need a slightly
different texture sampler than normal. The following texture and sampler has been
added to the shader code to be used by the decal mesh:

344 Character Animation with Direct3D

texture texDecal;

...

sampler DecalSampler = sampler_state

{

Texture = (texDecal);

MinFilter = Linear;

MagFilter = Linear;

MipFilter = Linear;

AddressU = Clamp; //Important! Clamp UVW coordinates

AddressV = Clamp;

AddressW = Clamp;

MaxAnisotropy = 16;

};

The clamping of the UVW coordinates is what will stretch the edge pixels of the
decal texture, making sure the decal only appears once in the middle of the decal
mesh. Figure 14.14 shows a close-up of the Soldier rendered in real time with some
decals applied.

FIGURE 14.14
Decals in use.

Chapter 14 Character Decals 345

I’ve tried to divide the creation of the decals into logical sections and thus into
different functions. You can, of course, do some optimizations by combining these
functions into one giant function. By doing so you can reduce the number of locks
required to some of the vertex and index buffers. I leave that for you, however.

There is one downside to the way the UV coordinates of the decal mesh are
calculated in this example. You will probably notice the problem when you place
a decal on a curved surface. Since the UV coordinates are calculated from the
plane of the triangle hit by the ray, this results in some clearly visible stretching of
the decal texture. Figure 14.15 demonstrates this problem.

EXAMPLE 14.3

Example 14.3 is the final character decal example. In it, you can “shoot”
decals with the mouse using the same controls as in the previous example.

As usual, have a good look at the code in its entirety and play around with it. Try
some of the many improvements I’ve suggested throughout this chapter. You should
also have very little problem porting the decal system presented here to support
static meshes as well (the helmet and the pulse rifle of the Soldier to start with).

346 Character Animation with Direct3D

Because I’m using a plane (calculated from the hit position and the triangle
normal) to calculate the UV coordinates of the decal, there will be some stretching
when the decal is applied to curved surfaces. You can see this in Figure 14.15 where
the positions of the vertices in the texture surface aren’t spread out uniformly (even
though the distance on the mesh surface between the vertices is).

This is a problem related to that of using the straight line distance from the hit
to the vertex described earlier. If you can calculate the actual distance over the
mesh surface from the hit position to the vertex, then you can also improve on the
UV coordinate calculation.

CONCLUSIONS

This chapter introduced the concept of adding real-time scratches, bullet holes, etc.,
to your character using decals. Decals are a great way of adding extra detail or ran-
domness to your characters without having a major impact on texture memory.

One thing I haven’t covered in this chapter is how to handle a large number
of decals. In a first-person shooter game, for example, the number of bullet-hole-
induced decals can quickly rise to several thousands. At some point you need to
start removing the decals from the scene or your frame rate will start to drop.
Usually, you’ll need to implement some form of decal manager that keeps track
of all the decals in the world and which can remove them according to:

FIGURE 14.15
Decal UV coordinates over a curved surface.

Chapter 14 Character Decals 347

Decal position (relative to the player)
Decal age
First-in, first-out

Once a decal has been flagged for removal, you can either just pop it out of
existence, fade it out, or wait until the player is looking the other way and then
remove it (you can easily check the decal position against the player view frustum).
One big improvement to this decal system would also be to have normal-mapped
decals, making it possible to add dents, etc., to the character. Hopefully you’ve
gotten enough out of this chapter to be able to create your own decal system (with
all the possible improvements mentioned in this chapter and more).

CHAPTER 14 EXERCISES

Also create decals for static meshes (pulse rifle, helmet). Note that you need to
disregard the skinning information when creating the decal mesh; otherwise, it
is pretty much the same process.
Use the D3DXIntersect method to find all intersections of a mesh. Use this also
to create exit wounds of the ray.
Create a normal-mapped wound decal.
Create a particle system and tie it to the decal (e.g., blood pouring from a
wound).
Make a more accurate implementation of the “triangle-bounding sphere” test
used to determine whether or not a triangle belongs to the decal mesh. Find the
point on the triangle closest to the bounding sphere.
Use different decals for the character’s armor and the face.

This page intentionally left blank

349

Hair Animation15

In this chapter I’ll briefly cover the topic of dynamic hair animation. When I say
“hair animation” I don’t mean a simple pony tail animated with a few bones, but
the generic “any-hair-style” case. This topic is closely linked to the topic of cloth
animation (they share many similarities).

Hair animation is a component that most games leave out completely. The
primary reason is because it is quite costly (thousands of small triangles are
required, which can, in most cases, give you more bang-for-your-buck somewhere
else). The second reason is that it is very hard to get hair animation to look good.
So, because of these issues, most developers just opt for leaving out animated hair

350 Character Animation with Direct3D

completely from their game characters. Usually, they stick with either a static
mesh for the characters’ hair or cover the heads with some form of helmets or
other headwear.

The following topics will be covered in this chapter:

Single hairs versus strips of hair
Generating hair strips from control splines
Animating control splines

HAIR REPRESENTATION

OK, so you want to have a dynamically animated haircut for your game character.
Well, the first issue to solve is how to represent, or render, the hair. The two most
common ways to represent hair are either as a bunch of splines or as a set of meshes
(strips) with an alpha-blended hair texture (see Figure 15.1).

FIGURE 15.1
Individual hair strands versus hair strips.

Chapter 15 Hair Animation 351

NVIDIA has made a very nice demo of a mermaid, which renders individual hair
strands as splines. Although this option may be viable in future games, it is, at the time
this book was written, a far too costly option (nevertheless, I strongly recommend you
check out NVIDIA’s Nalu demo). You can find a really good article about the hair
animation in this demo at the following URL:

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
It seems rendering/simulating individual hair strands is a bit too expensive for

today’s hardware. This leaves us with the option of simulating multiple hair strands
using a mesh strip and a texture.

HAIR MODELING

The problem of creating the hair mesh for the character can be approached in
many ways. The most straightforward approach to grasp is, of course, to do it by
hand. Simply model and texture all the hair strips of the character in modeling
software like 3D Studio Max, Maya, or Lightwave, etc. Then, import this hair mesh
into your game somehow and animate and render it. This is, of course, a rather
expensive process and one that requires considerable artistic talent (something that,
not surprisingly, most programmers lack). It also means that for each new haircut
you will have to do all the work over again from scratch. So, instead, let’s try to
make a system for this and “grow” hair for our characters in code.

This will be done by importing just a few splines (aka control splines) from
some modeling software and then generating the hairs (either strands or strips)
between the control splines in code. Figure 15.2 shows an example of this.

FIGURE 15.2
Example of control hairs and interpolated hairs.

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html

352 Character Animation with Direct3D

Even though Figure 15.2 only shows how this could be used to generate hair
strands, you can easily use this technique to generate strips as well. In either case,
this technique lets you (or your artist) quickly create or shape new haircuts without
all the manual polygonal modeling and texturing.

THE CONTROL HAIR CLASS

Let’s start by looking at a single control hair. The control hair consists of a list of
points that define the location of the control hair. Since the control hairs will be
used only for the growing of the more detailed hair strips and to update the hair
simulation, it is good to keep the number of points used in the control hair to a
minimum. Just because the control hair has a low level of detail (i.e., few points)
doesn’t mean the final hair strips will, since these are cubically interpolated from
the points in the control hair, as shown in Figure 15.3.

This is a great thing, because it gives you complete control over the amount of
polygons and detail you have for your haircuts (as opposed to pre-created hair
meshes). To represent a control hair, I’ve created the following class:

class ControlHair

{

public:

ControlHair();

float GetSegmentPercent(float prc);

pair<int, int> GetBlendIndices(float prc);

D3DXVECTOR3 GetBlendedPoint(float prc);

FIGURE 15.3
Control hair and generated strip.

void Render();

public:

vector<D3DXVECTOR3> m_points;

};

As said before, the control hair just consists of a list of control points. The
GetSegmentPercent(), GetBlendIndices(), and GetBlendedPoint() helper functions
are used when calculating the cubically blended spline. These three functions take
a percentage float value in the range 0 to 1, where 0 is the start of the hair and 1 is
the end point of the hair. Figure 15.4 shows how these three functions are used.

Chapter 15 Hair Animation 353

FIGURE 15.4
The control hair helper functions.

Figure 15.4 shows the result if you pass 55% (or 0.55f) to these three helper func-
tions. The first helper function, GetSegmentPercent(), converts a percentage value
from the whole hair to a percentage value between two points of the hair. So first you
need to calculate between which two points the value lies and then calculate the new
percentage value as shown in code here:

float ControlHair::GetSegmentPercent(float prc)

{

//Calculate percentage step between two points in the control hair

float step = 1.0f / (float)(m_points.size() - 1);

int numSteps = (int)(prc / step);

//Convert prc to the [0-1] range of the segment

return (prc - numSteps * step) / step;

}

Next is the GetBlendIndices() function. This function retrieves the two indices
of the segment described by a certain hair percentage value as shown here:

pair<int, int> ControlHair::GetBlendIndices(float prc)

{

//Less than zero

if(prc <= 0.0f)

return pair<int, int>(0, 0);

//Greater than one

if(prc >= 1.0f)

return pair<int, int>(

(int)m_points.size() - 1,

(int)m_points.size() - 1);

//Get first segment index

int index1 = (int)(prc * (m_points.size() - 1));

//Get second segment index (no greater than num points - 1)

int index2 = min(index1 + 1, (int)m_points.size() - 1);

return pair<int, int>(index1, index2);

}

354 Character Animation with Direct3D

Chapter 15 Hair Animation 355

This function simply figures out which two points define the segment on which
a certain percentage value lies. This information must be known when you attempt
to blend between two points, which coincidentally is something that the next helper
function does. To get smooth blending between the control points (as opposed to
basic linear interpolation, which would produce very blocky hairs), I use cubic
interpolation for the hair strips. Consider the points shown in Figure 15.5.

A cubically interpolated point (pn) needs to take the four neighboring points
(p1, p2, p3 and p4) into consideration. The point pn can be calculated according to
the following formula, where t is the percentage between the points p1 and p2:

P = (p3 – p2)–(p0 – p1)
Q = (p0 – p1) – P
R = (p2 – p0)
S = p1

pn = P � t3 + Q � t2 + R � t + S

This formula is used in the GetBlendedPoint() function, which makes use of
the two previous helper functions to return a cubically blended point along the
control hair:

D3DXVECTOR3 ControlHair::GetBlendedPoint(float prc)

{

//Get two affected indices

pair<int, int> indices = GetBlendIndices(prc);

//Get the four point indices

int index0 = max(indices.first - 1, 0);

FIGURE 15.5
Cubic interpolation.

356 Character Animation with Direct3D

int index1 = indices.first;

int index2 = indices.second;

int index3 = min(indices.second + 1, (int)m_points.size() - 1);

//Get segment percentage

float t = GetSegmentPercent(prc);

//Perform the cubic interpolation

D3DXVECTOR3 P = (m_points[index3] - m_points[index2]) –

(m_points[index0] - m_points[index1]);

D3DXVECTOR3 Q = (m_points[index0] - m_points[index1]) - P;

D3DXVECTOR3 R = m_points[index2] - m_points[index0];

D3DXVECTOR3 S = m_points[index1];

return (P * t * t * t) +

(Q * t * t) +

(R * t) +

S;

}

That about covers the control hair. Later on, when you simulate the hair, all you
need to do is update the points in your control hairs and the rest of the haircut will
follow suit. The next step is to actually create the strips from these control hairs.
After that you’ll have something “hair-ish” that can be rendered onto the screen.

THE HAIRPATCH CLASS

The naïve way of implementing the hair strips would be to have a single mesh for each
of the hair strips and perhaps use some form of skinning to implement an animated
hair strip. However, this is very inefficient! You’re bound to have hundreds of hair
strips per haircut, so to improve performance you need to bundle strips together in
one mesh to reduce the number of draw calls necessary to render the hair. So for this
purpose I’ve created the HairPatch class, which implements a patch of hair defined
as the area between four control hairs. Each of the four control hairs marks one
corner of the “squarish” area of the hair patch. Figure 15.6 shows how the hair patch
will be built.

Chapter 15 Hair Animation 357

Note that all the strips in Figure 15.6 belong to the same mesh. The idea is that
as one of the control hairs bends or animates, the hair strips close to this control
hair will be influenced and bend in a similar manner. A strip placed exactly in the
middle of the hair patch will be influenced equally by the four control hairs. On
the other hand, a strip placed in the exact same spot as a control hair will only be
influenced by this control hair and no others.

class HairPatch

{

public:

HairPatch(ControlHair* pCH1,

ControlHair* pCH2,

ControlHair* pCH3,

ControlHair* pCH4);

~HairPatch();

D3DXVECTOR3 GetBlendedPoint(D3DXVECTOR2 pos, float prc);

HairVertex GetBlendedVertex(D3DXVECTOR2 pos,

float prc,

bool oddVertex);

FIGURE 15.6
The hair patch.

358 Character Animation with Direct3D

vector<D3DXVECTOR2> GetStripPlacements(float sizePerHairStrip);

void CreateHairStrips(int numSegments,

float sizePerHairStrip,

float stripSize);

void Render();

public:

ID3DXMesh* m_pHairMesh;

ControlHair* m_controlHairs[4];

};

The HairPatch class keeps four pointers to control hairs (which are set in the
constructor) as well as an ID3DXMesh object that the class is responsible for creating
and rendering. The GetBlendedPoint() function returns a point anywhere on the
patch along a certain percentage (again, zero being the base of the skull and one
being the tip of the hairs):

D3DXVECTOR3 HairPatch::GetBlendedPoint(D3DXVECTOR2 pos, float prc)

{

//Get blended points along the control hairs (for this prc)

D3DXVECTOR3 p1 = m_controlHairs[0]->GetBlendedPoint(prc);

D3DXVECTOR3 p2 = m_controlHairs[1]->GetBlendedPoint(prc);

D3DXVECTOR3 p3 = m_controlHairs[2]->GetBlendedPoint(prc);

D3DXVECTOR3 p4 = m_controlHairs[3]->GetBlendedPoint(prc);

//Perform a linear 2D blend

D3DXVECTOR3 blendedX1 = p2 * pos.x + p1 * (1.0f - pos.x);

D3DXVECTOR3 blendedX2 = p3 * pos.x + p4 * (1.0f - pos.x);

return blendedX2 * pos.y + blendedX1 * (1.0f - pos.y);

}

First you retrieve the blended position from each of the four control hairs (for the
desired percentage). Then you need to perform a 2D blend depending on the hairs’
position on the patch (i.e., the closer a hair is to one of the control hairs, the more this
control hair will influence it). Now that you can calculate a point anywhere on the
hair patch it is quite simple to start generating the hair strips.

Chapter 15 Hair Animation 359

GROWING THE HAIR

Before you actually create the hair strips, there are some questions that need
answering. First is how detailed you want to make the strips (i.e., how many
faces/vertices per strip), and second is how tightly you want to pack the strips. Here
again is where you enter the gray zone of performance versus what looks good.
Most likely this will differ from one situation to the next, depending on what
performance requirements the game you’re working on has. However, with this
way of growing the hair dynamically you can even plug in these two values in an
LOD system. Simply increase the number of strips and the detail of these the closer
to the camera a character is.

Let’s start with the simpler of the two problems—namely, where to place the
strips. One way is, of course, to place them uniformly by creating a uniform grid
between the four control hairs and placing a hair strip at each point of this grid.
This tends to create a bit too-regular-looking hair patch. You can easily get a
better looking hair patch using fewer strips by simply placing them at random.
One important restriction is to make sure that no two strips are placed too close to
each other. The GetStripPlacements() function in the HairPatch class implements
this:

vector<D3DXVECTOR2> HairPatch::GetStripPlacements(

float sizePerHairStrip)

{

//Place hair strips at random

vector<D3DXVECTOR2> strips;

for(int i=0; i<200; i++)

{

//Create random hair position

D3DXVECTOR2 hairPos = D3DXVECTOR2((rand()%1000) / 1000.0f,

(rand()%1000) / 1000.0f);

//Check that this hair isn’t too close to another hair

bool valid = true;

for(int h=0; h<(int)strips.size() && valid; h++)

{

D3DXVECTOR3 diff = hairPos - strips[h];

if(D3DXVec2Length(&diff) < sizePerHairStrip)

valid = false;

}

360 Character Animation with Direct3D

//Add hair if valid

if(valid)

strips.push_back(hairPos);

}

//Order strips for correct alpha blending

for(int i=0; i<(int)strips.size(); i++)

{

for(int j=i+1; j<(int)strips.size(); j++)

{

if(strips[j].y < strips[i].y)

{

D3DXVECTOR2 temp = strips[i];

strips[i] = strips[j];

strips[j] = temp;

}

}

}

return strips;

}

This piece of code simply tries to place an arbitrary number of hair strips (in
this case 200) in the hair patch. The sizePerHairStrip parameter determines how
closely packed the hair strips are allowed to be. After the strips have been placed,
they are ordered for correct alpha blending. Later, when you have a head full of
hair, it makes sense to order the hair strips according to how far they are from the
skull. In the later examples, when you have multiple patches of hair, these will have
to be ordered in real time as well for correct alpha blending.

The GetStripPlacement() returns a vector of 2D vectors (confusing wording,
I know). These 2D points have an X and Y value in the range of 0 to 1, which then
determines how much a certain control hair influences this strip. Next up is the
CreateHairStrips() function that creates the mesh object and fills it up with all
the hair strips:

void HairPatch::CreateHairStrips(int numSegments,

float sizePerHairStrip,

float stripSize)

{

//Get random hair strip positions

vector<D3DXVECTOR2> strips = GetStripPlacements(sizePerHairStrip);

Chapter 15 Hair Animation 361

//Create a mesh containing all strips

int numFacesPerStrip = numSegments * 2;

int numVertsPerStrip = (numSegments + 1) * 2;

D3DXCreateMesh(numFacesPerStrip * (int)strips.size(),

numVertsPerStrip * (int)strips.size(),

D3DXMESH_MANAGED,

hairVertexDecl,

g_pDevice,

&m_pHairMesh);

HairVertex *vb = NULL;

WORD *ib = NULL;

m_pHairMesh->LockVertexBuffer(0, (void**)&vb);

m_pHairMesh->LockIndexBuffer(0, (void**)&ib);

int vIndex = 0;

int iIndex = 0;

//Create hair strips

for(int i=0; i<(int)strips.size(); i++)

{

int startVertIndex = vIndex;

//Angle the strip randomly

float rAngle = ((rand()%1000) / 1000.0f) * 2.0f - 1.0f;

D3DXVECTOR2 rOffset = D3DXVECTOR2(cos(rAngle),

sin(rAngle)) * stripSize;

//Create vertices

for(int s=0; s<=numSegments; s++)

{

float prc = s / (float)numSegments;

vb[vIndex++] = GetBlendedVertex(strips[i] + rOffset,

prc,

false);

vb[vIndex++] = GetBlendedVertex(strips[i] - rOffset,

prc,

true);

}

362 Character Animation with Direct3D

//Create indices

for(int s=0; s<numSegments; s++)

{

//Tri 1

ib[iIndex++] = startVertIndex + s * 2 + 0;

ib[iIndex++] = startVertIndex + s * 2 + 3;

ib[iIndex++] = startVertIndex + s * 2 + 1;

//Tri 2

ib[iIndex++] = startVertIndex + s * 2 + 0;

ib[iIndex++] = startVertIndex + s * 2 + 2;

ib[iIndex++] = startVertIndex + s * 2 + 3;

}

}

m_pHairMesh->UnlockVertexBuffer();

m_pHairMesh->UnlockIndexBuffer();

}

This function takes the amount of segments in the hair, along with the size of
the strips and their spread, as parameters. It creates the single mesh of the hair
patch, locks the vertex and index buffer, and starts filling it with data. Note that I
give the different hair strips a random angle (something which makes the hair look
better when viewed from different angles). The GetBlendedVertex() function
simply creates and returns a vertex for the specified 2D position of the strip and
the percentage value (skull to hair tip). That is all you need to know about how the
mesh of the hair patch is grown.

RENDERING THE HAIR PATCH

Rendering the hair mesh should be straightforward, shouldn’t it? Well, not quite.
So far I haven’t talked about how I’m going to animate the hair. You could, of
course, animate the control hairs, then lock the vertex buffer of the hair patch and
loop over all its vertices and update their positions. Although this would certainly
work, it’s not quite optimal. Let’s instead update all the vertex positions on the fly
as we’re rendering them on the GPU. For this to happen, you need to work some
serious magic. Instead of having the position of a hair vertex in object space, I’ll
fill the vertex data with some custom information that will let the GPU calculate
the animated position of the vertex on the fly. This means you have to perform
the cubic interpolation for each of the four control hairs, and then blend the
result linearly in 2D, all in shader code. To do this the shader needs the following
information:

Chapter 15 Hair Animation 363

The positions for all control hair points

The 2D blend position of the vertex (range 0 to 1)

The percentage value of the vertex (range 0 to 1)

The UV coordinates of the vertex

In theory, this is all that is needed. However, since some things don’t change as
you render the hair, you can easily pre-compute the following information in the
vertex data and supply the shader with it to save some instructions:

Start and end blend index of the active segment

Segment percentage

So to contain all this rather cryptic data, I’ve created the following vertex
structure and declaration:

struct HairVertex{

D3DXVECTOR3 position;

Byte blendindices[4];

D3DXVECTOR3 normal;

D3DXVECTOR2 uv;

};

...

//Hair Vertex Declaration

D3DVERTEXELEMENT9 hairVertexDecl[] =

{

{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 0},

{0, 12, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_BLENDINDICES, 0},

{0, 16, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 0},

{0, 28, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 0},

D3DDECL_END()

};

364 Character Animation with Direct3D

You may remember from the previous section how the vertex buffer of the
hair patch mesh was filled using the GetBlendedVertex() function. This function
just creates a HairVertex object and returns it:

HairVertex HairPatch::GetBlendedVertex(D3DXVECTOR2 pos, float prc, bool

oddVertex)

{

//Create a new hair vertex

HairVertex hv;

memset(&hv, 0, sizeof(HairVertex));

//Set vertex data

hv.position = D3DXVECTOR3(

pos.x,

pos.y,

m_controlHairs[0]->GetSegmentPercent(prc));

hv.normal = D3DXVECTOR3(0.0f, 1.0f, 0.0f);

hv.uv = D3DXVECTOR2(oddVertex ? 0.0f : 1.0f, min(prc, 0.99f));

//Get segment indices

pair<int, int> indices = m_controlHairs[0]->GetBlendIndices(prc);

hv.blendindices[0] = indices.first;

hv.blendindices[1] = indices.second;

return hv;

}

Next, you need to process this rather special vertex data in the shader. Since the
control hairs are updated for each frame when they are animated, you need to also
upload the positions of all the points in the control hairs. This can be done in much
the same way you uploaded the bone matrices in the skinned mesh examples. I’ve
added a simple control hair table to the shader:

extern float3 ControlHairTable[20];

The points are stored in the following order: Control hair 1 – Point 1, Point 2
… Control hair 2 – Point 1, Point 2 … etc. So to get the second point of the third
hair, you’d simply look it up from the ControlHairTable like this:

point_3_2 = ControlHairTable[3 * numPointsPerHair + 2];

Chapter 15 Hair Animation 365

Some of the blending functionality stored in the ControlHair class also needs to
be implemented in shader code. For instance, to do the cubic interpolation with the
help of the ControlHairTable in the vertex shader, I’ve created the following HLSL
helper function:

float3 GetHairPos(int hair, int index1, int index2, float prc)

{

//Calculate index 0 & 3

int index0 = max(index1 - 1, 0);

int index3 = min(index2 + 1, numPointsPerHair - 1);

//Offset index to correct hair in ControlHairTable

index0 += hair * numPointsPerHair;

index1 += hair * numPointsPerHair;

index2 += hair * numPointsPerHair;

index3 += hair * numPointsPerHair;

//Perform cubic interpolation

float3 P =(ControlHairTable[index3]-ControlHairTable[index2]) –

(ControlHairTable[index0]-ControlHairTable[index1]);

float3 Q =(ControlHairTable[index0]-ControlHairTable[index1]) - P;

float3 R = ControlHairTable[index2]-ControlHairTable[index0];

float3 S = ControlHairTable[index1];

return (P * prc * prc * prc) +

(Q * prc * prc) +

(R * prc) +

S;

}

The hair parameter is an index to which of the four control hairs of the patch
to use; index1and index2 are the indices to the points in the hair to blend between
(from which index0 and index3 are calculated). The prc parameter is then the
segment percentage, or, in other words, how far between the two points the target
point lies. This function is then used by the vertex shader to interpret the special
vertex data we’re passing in:

//Hair Vertex Shader

VS_OUTPUT vs_hair(VS_INPUT_HAIR IN)

{

VS_OUTPUT OUT = (VS_OUTPUT)0;

366 Character Animation with Direct3D

//Get position from the four control hairs

float3 ch1 = GetHairPos(0, IN.hairIndices[0],

IN.hairIndices[1], IN.position.z);

float3 ch2 = GetHairPos(1, IN.hairIndices[0],

IN.hairIndices[1], IN.position.z);

float3 ch3 = GetHairPos(2, IN.hairIndices[0],

IN.hairIndices[1], IN.position.z);

float3 ch4 = GetHairPos(3, IN.hairIndices[0],

IN.hairIndices[1], IN.position.z);

//Blend linearly in 2D

float3 px1 = ch2 * IN.position.x + ch1 * (1.0f - IN.position.x);

float3 px2 = ch3 * IN.position.x + ch4 * (1.0f - IN.position.x);

float3 pos = px2 * IN.position.y + px1 * (1.0f - IN.position.y);

//Transform to world coordinates

float4 posWorld = mul(float4(pos.xyz, 1), matW);

OUT.position = mul(posWorld, matVP);

//Copy texture coordinates

OUT.tex0 = IN.tex0;

return OUT;

}

Here, the exact same operations are done as described earlier in the GetBlended-
Point() function of the HairPatch class. The blended position of each of the four
control hairs is obtained from the ControlHairTable using the GetHairPos() helper
function. Note that the indices passed to the helper function have been pre-computed
and stored in the vertex data. Next, the points returned from the control hairs are
blended depending on the 2D position of the hair vertex. The resulting point will be
in object space, so to get it to the correct position on the screen it is multiplied with
the world and the view-projection matrix. As said before, the beauty of going the long
way about this is that you now can update the control hairs on the CPU and the mesh
in the hair patch will just follow suit “automagically.”

Chapter 15 Hair Animation 367

CREATING A HAIRCUT

So how would you go about creating these 10 to 20 control hairs needed to create
a decent-looking haircut for a character? Well, the most obvious way is to enter
them manually as was done with the four control hairs in Example 15.1. Although
it doesn’t take many minutes to realize that to model a set of 3D lines with a text
editor is probably not the way to go. The best way is to use 3D modeling software
(Max, Maya, or whatever other flavor you prefer). Figure 15.7 shows an image of
a “haircut” created in 3D Studio Max as a set of lines.

EXAMPLE 15.1

In Example 15.1 a single hair patch is created and rendered. The four control
hairs are animated with a simple noise function, and the mesh is updated

and animated completely on the GPU.

368 Character Animation with Direct3D

I was lucky enough to know Sami Vanhatalo (Senior Technical Artist at Remedy
Entertainment) who was kind enough to write an exporter for 3D Studio Max for
me. With this exporter it becomes very easy to dump a set of lines from 3D Studio
Max to either a text or a binary file. I won’t cover the exporter here in this book since
it is written in Max Script and is out of the scope of this book. However, you’ll find
both the text and binary version of the exporter on the accompanying CD-ROM,
along with detailed instructions on how to use them. For the next example I’ll use
the data that has been outputted from the binary exporter. The data is in Table 15.1.

FIGURE 15.7
Control hairs used to create a haircut.

Chapter 15 Hair Animation 369

TABLE 15.1 THE BINARY HAIR FORMAT

The file structure is very simple and doesn’t contain any superfluous information.
Feel free to modify the exporter according to your own needs. In any case, to read a
set of lines from a binary file with this format, I’ve created the LoadHair() function to
the Hair class. The following code segment is an excerpt from this function showing
how to read one of these haircut data files:

ifstream in(hairFile, ios::binary);

if(!in.good())

return;

//Version number

long version;

in.read((char*)&version, sizeof(long));

//Number splines

long numSplines = 0;

in.read((char*)&numSplines, sizeof(long));

Type Description

long File version number

long Number of lines

long Number of points for Line 1

float X value Line 1, Point 1

float Y value Line 1, Point 1

float Z value Line 1, Point 1

float X value Line 1, Point 2

float Y value Line 1, Point 2

float Z value Line 1, Point 2

…

float X value Line N, Point 1

float Y value Line N, Point 1

float Z value Line N, Point 1

370 Character Animation with Direct3D

//Read splines

for(int i=0; i<numSplines; i++)

{

ControlHair* ch = new ControlHair();

//Read points

long numPoints = 0;

in.read((char*)&numPoints, sizeof(long));

for(int p=0; p<numPoints; p++)

{

D3DXVECTOR3 point;

in.read((char*)&point, sizeof(D3DXVECTOR3));

ch->AddPoint(point);

}

m_controlHairs.push_back(ch);

}

in.close();

This “pipeline” is extremely simple and doesn’t have anything more than the
bare essentials. However, already with something simple as as this it becomes a
breeze to create and edit “spline haircuts” and export to your game.

ANIMATING THE CONTROL HAIRS

With all the work in the previous sections, you’ve accomplished one important
thing: You’ve managed to greatly reduce the amount of splines or points that you
need to animate. Even though you would use a very lightweight physics system to
update the individual hair strips, it would, in all likelihood, still be too heavy for a
real-time application. Now you can do your hair simulation on the control hairs
only and in this way save a lot of effort. Next comes the final problem, which is how
to animate the control hairs in a somewhat realistic and good-looking way. In
Chapter 6 you had a look at creating a simple physics engine with particles and
springs. Well, you don’t need much more than that to create a simplified physics
simulation for your control hairs. At each point of the control hair I’ll place a
simple bounding sphere that I will test against a set of spheres defining the shape of
the character head (you could also perform collision checks between the control
hair spheres, but the end result doesn’t really justify the extra amount of collision
checks required). Figure 15.8 shows the setup of our simple physics simulation:

Chapter 15 Hair Animation 371

I’ve created a very simple bounding sphere class to be used for the character
head representation. The BoundingSphere class is defined as follows:

class BoundingSphere

{

public:

BoundingSphere(D3DXVECTOR3 pos, float radius);

void Render();

bool ResolveCollision(D3DXVECTOR3 &hairPos, float hairRadius);

private:

static ID3DXMesh* sm_pSphereMesh;

D3DXVECTOR3 m_position;

float m_radius;

};

Not so surprisingly, this class contains a position and a radius used to define the
bounding sphere. The static sm_pSphereMesh and the Render() function is just for
debugging and visualization purposes. The most important function in this class is
the ResolveCollision() function. This function tests whether a point collides with
the bounding sphere, and, if so, it moves the point away from the sphere until the
point no longer touches the sphere:

FIGURE 15.8
Physical setup of the hair animation.

372 Character Animation with Direct3D

bool BoundingSphere::ResolveCollision(D3DXVECTOR3 &hairPos,

float hairRadius)

{

//Difference between control hair point and sphere center

D3DXVECTOR3 diff = hairPos - m_position;

//Distance between points

float dist = D3DXVec3Length(&diff);

if(dist < (m_radius + hairRadius))

{

//Collision has occurred; move hair away from bounding sphere

D3DXVec3Normalize(&diff, &diff);

hairPos = m_position + diff * (m_radius + hairRadius);

return true;

}

return false;

}

Once you have this function up and running and a few spheres placed to roughly
represent the character head, you can start simulating in some fashion. To get a hair
animation to look good, there’s a whole lot of black magic needed. For instance, you
can’t use gravity in the same way you would for other physical simulations. If you
used only gravity for simulating the hairs, the result would end up looking like a
drenched cat with hair hanging straight down. In reality, haircuts tend to roughly stay
in their original shape. To quickly emulate this, I’ve stored the original points of the
control hair points as the haircut is created. Then, at run time, I have a small spring
force between the current control hair’s position and its original position. This will
keep the haircut from deforming completely. To show a quick hair simulation in
action, I’ve added the UpdateSimulation() function to the ControlHair class:

void ControlHair::UpdateSimulation(

float deltaTime,

vector<BoundingSphere> &headSpheres)

{

const float SPRING_STRENGTH = 10.0f;

const D3DXVECTOR3 WIND(-0.2f, 0.0f, 0.0f);

for(int i=1; i<(int)m_points.size(); i++)

{

//Point’s percentage along the hair

float prc = i / (float)(m_points.size() - 1);

Chapter 15 Hair Animation 373

D3DXVECTOR3 diff = m_originalPoints[i] - m_points[i];

float length = D3DXVec3Length(&diff);

D3DXVec3Normalize(&diff, &diff);

//Update velocity of hair control point (random wind)

float random = rand()%1000 / 1000.0f;

D3DXVECTOR3 springForce = diff * length * SPRING_STRENGTH;

D3DXVECTOR3 windForce = WIND * prc * random;

m_velocities[i] += (springForce + windForce) * deltaTime;

//Update position

m_points[i] += m_velocities[i] * deltaTime;

//Resolve head collisions

for(int h=0; h<(int)headSpheres.size(); h++)

{

if(headSpheres[h].ResolveCollision(m_points[i], 0.01f))

{

m_velocities[i] *= 0.5f;

}

}

}

}

In this function, each point along the control hairs is updated with a random
wind force as well as a spring force toward its original location. This function also
performs the collision checks between the character head representation (i.e., the
head bounding spheres), making sure that the hair doesn’t go through the face and
thus break the illusion.

THE HAIR CLASS

Finally, to clean up all I’ve gone through in this chapter, I’ll tie together all the
classes. To do this I encapsulate all the control hairs and hair patches in a single
class called Hair. This class is responsible for loading hair binary files, creating all
the patches from the loaded control hairs, managing the hair simulation, and finally
rendering the haircut. This class will also contain the hair texture used and the
physical representation of the character head:

374 Character Animation with Direct3D

class Hair

{

public:

Hair();

~Hair();

void LoadHair(const char* hairFile);

void CreatePatch(int index1,

int index2,

int index3,

int index4);

void Update(float deltaTime);

void Render(D3DXVECTOR3 &camPos);

int GetNumVertices();

int GetNumFaces();

public:

vector<ControlHair*> m_controlHairs;

vector<HairPatch*> m_hairPatches;

IDirect3DTexture9* m_pHairTexture;

vector<BoundingSphere> m_headSpheres;

};

One important thing to mention is that the Render() function in this class sorts
all the hair patches in Z depth from the camera before rendering them to the screen.
The Update() function takes care of calling the UpdateSimulation() function in the
ControlHair objects, providing the m_headSpheres vector for the physical simulation.

If you want to extend this example, it would probably be in the Hair class that
you would, for example, keep a pointer to the head bone of the character. Using this
bone pointer you would then update the position of all the control hairs as the head
moves around.

Chapter 15 Hair Animation 375

EXAMPLE 15.2

In this example a complete haircut is created and simulated in real time.
You can control the angle of the camera by clicking and dragging the

mouse. By pressing space, you will see the physical representation of the head along
with the control hairs as they are animated.

376 Character Animation with Direct3D

Figure 15.9 shows a series of frames taken from the animated hair.

CONCLUSIONS

After reading this chapter, you should have a good understanding of the difficulties
you’re faced with when trying to implement hair animation. To increase the quality
of the hair animation presented in this chapter, there are two obvious improve-
ments. First, create a proper physical simulation instead of the “random wind” force
I’ve used here. Second, attach the hair to the character head bone and let it inherit
motion from the head of the character. When doing this you’ll see some wonderful
secondary motion as the character moves and then suddenly stops, etc.

FIGURE 15.9
A haircut animated with the system covered in this chapter.

Chapter 15 Hair Animation 377

Another thing I haven’t covered in this chapter is the rendering of hair. There
are many advanced models of how light scatters on a hair surface. A really great
next stop for you is the thesis titled “Real-Time Hair Simulation and Visualization
for Games” by Henrik Halen [Halen07]. You can find this thesis online using the
following URL:

http://graphics.cs.lth.se/theses/projects/hair/
In the next and final chapter of this book, I’ll put most of the concepts covered

throughout this book into a single character class.

CHAPTER 15 EXERCISES

Create a Hair class supporting multiple levels of details. Scale the number of
segments used in hair strips and the number of hair strips used in total.
Try to create a longer haircut. (This may require a more detailed physical
representation of the character.)
Attach the haircut to a moving character head.
Implement a triangle hair patch relying on three control hairs instead of four.

FURTHER READING

[Halen07] Halen, Henrik, “Real-Time Hair Simulation and Visualization for
Games.” Available online at: http://graphics.cs.lth.se/theses/projects/hair/
report.pdf, 2007.

[Jung07] Jung, Yvonne, “Real Time Rendering and Animation of Virtual Characters.”
Available online at http://www.ijvr.org/issues/issue4-2007/6.pdf, 2007.

[Nguyen05] Nguyen, Hubert, “Hair Animation and Rendering in the Nalu Demo.”
Available online at http://http.developer.nvidia.com/GPUGems2/gpugems2_
chapter23.html, 2005.

[Ward05] Ward, Kelly, “Modeling Hair Using Levels-of-Detail.” Available online
at: http://www.cs.unc.edu/Research/ProjectSummaries/hair05.pdf, 2005.

http://www.ijvr.org/issues/issue4-2007/6.pdf
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
http://www.cs.unc.edu/Research/ProjectSummaries/hair05.pdf
http://graphics.cs.lth.se/theses/projects/hair/
http://graphics.cs.lth.se/theses/projects/hair/report.pdf
http://graphics.cs.lth.se/theses/projects/hair/report.pdf

This page intentionally left blank

379

Putting It All Together16

Welcome, dear reader, to the final chapter of this book! Throughout this book
you’ve had a quick glance at some of the major topics and techniques needed to
create a moving, talking, and falling character with Direct3D. In this chapter I
won’t present anything new, really, but will instead try to tie it all together and
create the final glorious Character class. Finally, for some of the topics I have not
covered in this book, I’ve added a few pages of discussion at the end. In this final
chapter, you’ll find the following:

380 Character Animation with Direct3D

Mixing facial animation with skeletal animation
The Character class
Future improvements
Alan Wake case study
Final thoughts

ATTACHING THE HEAD TO THE BODY

So far, the facial animation examples in this book have been based on a standalone
face (i.e., one of those faces not attached to a body). I guess you’ll agree with me
when I say that this isn’t how you usually see characters in a game. So to remedy this
problem, this section covers how to attach an animated head (i.e., the Face class) to
a skinned mesh.

You’ve already come across this problem a bit in Chapter 8, Example 3, where a
running human character was morphed into a werewolf. I’ll show you in this section
how to do (almost) the same thing with a character’s face. Remember that the face
can be generated by the FaceFactory class, for example, and doesn’t have to look the
same as the one in the actual skinned model. There is, of course, the limitation that
both the source mesh (random generated face) and the target mesh (face in skinned
model) must have the same amount of vertices and index buffer. Figure 16.1 shows
the pieces involved.

The head of the skinned mesh (black wireframe) is just another skinned mesh
with blend weights, blend indices, etc. The Face class, on the other hand, supports
all facial animation features (and can also be generated by the FaceFactory class).
Your job now is to replace the skinned mesh head with a Face object but while still
keeping the skinned information. This way, the new animated face will also turn if
there’s some keyframe animation involving the head (or if you use some Look-At
IK, and so on).

Chapter 16 Putting It All Together 381

Okay…moving on. The first thing to do is, of course, to define the vertex dec-
laration you’ll use for the skinned and morphed face:

//Face Vertex Format

D3DVERTEXELEMENT9 faceVertexDecl[] =

{

//Stream 0: Base Mesh

{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 0},

{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 0},

FIGURE 16.1
Attaching a face to a skinned mesh.

382 Character Animation with Direct3D

{0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_TEXCOORD, 0},

//Stream 1: Morph Target

{1, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 1},

{1, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 1},

//Stream 2: Morph Target

{2, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 2},

{2, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 2},

//Stream 3: Morph Target

{3, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 3},

{3, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 3},

//Stream 4: Morph Target

{4, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 4},

{4, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, 4},

//Stream 5: Skeletal Info

{5, 12, D3DDECLTYPE_FLOAT1, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_BLENDWEIGHT, 5},

{5, 16, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_BLENDINDICES, 5},

D3DDECL_END()

};

You might recognize most of this from the first face-morphing examples.
Stream 0 contains the base mesh of the face, streams 1 through 4 contain the morph
targets, and finally, stream 5 contains the skinning information (bone indices and
blend weights).

I’ve added the SetStreamSources() function to the Face class to set the stream
sources of the face (streams 0–4) as well as the index buffer:

void Face::SetStreamSources(FaceController *pController)

{

//Set Streams

DWORD vSize = D3DXGetFVFVertexSize(m_pBaseMesh->GetFVF());

IDirect3DVertexBuffer9* baseMeshBuffer = NULL;

m_pBaseMesh->GetVertexBuffer(&baseMeshBuffer);

pDevice->SetStreamSource(0, baseMeshBuffer, 0, vSize);

//Set Blink Source

IDirect3DVertexBuffer9* blinkBuffer = NULL;

m_pBlinkMesh->GetVertexBuffer(&blinkBuffer);

pDevice->SetStreamSource(1, blinkBuffer, 0, vSize);

//Set Emotion Source

IDirect3DVertexBuffer9* emotionBuffer = NULL;

m_emotionMeshes[pController->m_emotionIndex]->

GetVertexBuffer(&emotionBuffer);

pDevice->SetStreamSource(2, emotionBuffer, 0, vSize);

//Set Speech Sources

for(int i=0; i<2; i++)

{

IDirect3DVertexBuffer9* speechBuffer = NULL;

m_speechMeshes[pController->m_speechIndices[i]]->

GetVertexBuffer(&speechBuffer);

pDevice->SetStreamSource(3 + i, speechBuffer, 0, vSize);

}

//Set Index buffer

IDirect3DIndexBuffer9* ib = NULL;

m_pBaseMesh->GetIndexBuffer(&ib);

pDevice->SetIndices(ib);

}

That takes care of the first five streams, which leaves only the skinning infor-
mation that you need to set from the skinned mesh before rendering the face. The
following piece of code is from the soon-to-be-unveiled Character class. During the
rendering of the skinned mesh it performs a check to see if the skinned mesh being
rendered is the special case, “the head.” If so, the rendering function of the skinned
mesh calls this function with the BoneMesh containing the skinned mesh head sent
as a parameter (pFacePlaceholder):

Chapter 16 Putting It All Together 383

void Character::RenderFace(BoneMesh *pFacePlaceholder)

{

if(m_pFace == NULL ||

m_pFaceController == NULL ||

pFacePlaceholder == NULL)

return;

//Set Active Vertex Declaration

pDevice->SetVertexDeclaration(m_pFaceVertexDecl);

//Set Stream Sources (Stream 0 – 4)

m_pFace->SetStreamSources(m_pFaceController);

//Add Bone Blending Info Stream (Stream 5)

DWORD vSize = D3DXGetFVFVertexSize(

pFacePlaceholder->MeshData.pMesh->GetFVF());

IDirect3DVertexBuffer9* headBuffer = NULL;

pFacePlaceholder->MeshData.pMesh->GetVertexBuffer(&headBuffer);

pDevice->SetStreamSource(5, headBuffer, 0, vSize);

//Set Shader Variables

...

//Draw Mesh

pDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0,

pFacePlaceholder->MeshData.pMesh->GetNumVertices(), 0,

pFacePlaceholder->MeshData.pMesh->GetNumFaces());

//Cleanup

...

}

Okay, so basically what has happened so far is that you have located the skinned
head mesh to be replaced by an actual Face object. You’ve set the vertex format for
the new skinned and morphed face, and you’ve also set the respective vertex streams.
Next is the vertex shader that reads the streams and outputs it all to the screen:

//Input structure to match the vertex declaration

struct VS_BONE_MORPH_INPUT

{

float4 pos0 : POSITION0;

float3 norm0 : NORMAL0;

float2 tex0 : TEXCOORD0;

384 Character Animation with Direct3D

Chapter 16 Putting It All Together 385

float4 pos1 : POSITION01;

float3 norm1 : NORMAL1;

float4 pos2 : POSITION2;

float3 norm2 : NORMAL2;

float4 pos3 : POSITION3;

float3 norm3 : NORMAL3;

float4 pos4 : POSITION4;

float3 norm4 : NORMAL4;

float4 weights : BLENDWEIGHT5;

int4 boneIndices : BLENDINDICES5;

};

VS_OUTPUT vsFaceBoneMorph(VS_BONE_MORPH_INPUT IN)

{

//First morph the mesh, then apply skinning!

VS_OUTPUT OUT = (VS_OUTPUT)0;

float4 position = IN.pos0;

float3 normal = IN.norm0;

//Blend Position

position += (IN.pos1 - IN.pos0) * weights.r;

position += (IN.pos2 - IN.pos0) * weights.g;

position += (IN.pos3 - IN.pos0) * weights.b;

position += (IN.pos4 - IN.pos0) * weights.a;

//Blend Normal

normal += (IN.norm1 - IN.norm0) * weights.r;

normal += (IN.norm2 - IN.norm0) * weights.g;

normal += (IN.norm3 - IN.norm0) * weights.b;

normal += (IN.norm4 - IN.norm0) * weights.a;

//Getting the position of the vertex in the world

float4 posWorld = float4(0.0f, 0.0f, 0.0f, 1.0f);

float3 normWorld = float3(0.0f, 0.0f, 0.0f);

float lastWeight = 0.0f;

int n = NumVertInfluences-1;

normal = normalize(normal);

386 Character Animation with Direct3D

//Skin the vertex!

for(int i = 0; i < n; ++i)

{

lastWeight += IN.weights[i];

posWorld += IN.weights[i] *

mul(position, FinalTransforms[IN.boneIndices[i]]);

normWorld += IN.weights[i] *

mul(normal, FinalTransforms[IN.boneIndices[i]]);

}

lastWeight = 1.0f - lastWeight;

posWorld += lastWeight *

mul(position, FinalTransforms[IN.boneIndices[n]]);

normWorld += lastWeight *

mul(normal, FinalTransforms[IN.boneIndices[n]]);

posWorld.w = 1.0f;

//Project the vertex to screen space

OUT.position = mul(posWorld, matVP);

//Lighting...

OUT.shade = max(dot(normWorld,

normalize(lightPos - posWorld)), 0.2f);

OUT.tex0 = IN.tex0;

return OUT;

}

There! On the screen you’ll now have a skinned and morphed face on your
character. This code is all implemented in the new Character class. The result is
shown in Figure 16.2.

As you can see in Figure 16.2, the face is no longer a static standalone face, but is
now attached to the body. When the head moves the neck area stretches according to
how the original face mesh was skinned.

Chapter 16 Putting It All Together 387

THE CHARACTER CLASS

The Character class takes everything you’ve learned in this book and puts it together
under one interface! The Character class can play keyframed animation, morphed
facial animation, physical-based ragdoll animation, and inverse kinematics-based
animation. The class is defined as follows:

class Character : public RagDoll

{

public:

Character(char fileName[], D3DXMATRIX &world);

~Character();

void Update(float deltaTime);

void Render();

void RenderMesh(Bone *bone);

void RenderFace(BoneMesh *pFacePlaceholder);

void PlayAnimation(string name);

void Kill();

public:

bool m_lookAtIK, m_armIK;

bool m_dead;

FIGURE 16.2
Skinned and morphed face.

388 Character Animation with Direct3D

private:

Face *m_pFace;

FaceController *m_pFaceController;

ID3DXAnimationController* m_pAnimController;

InverseKinematics *m_pIK;

IDirect3DVertexDeclaration9 *m_pFaceVertexDecl;

int m_animation;

};

As you can see, this class inherits from the RagDoll class, which in turn inherits
from the SkinnedMesh class. On top of inheriting the functionality of those two
classes, it also stores a Face object, a FaceController object, an InverseKinematics
object, and an animation controller. The putting together of this class is pretty
straightforward; the only thing worth mentioning is the m_dead variable. As long as
this variable is false, the character is “alive,” meaning that you can play animations,
etc. But as soon as the Kill() function has been called (and the m_dead variable has
been set to true), the RagDoll class kicks in and the other interfaces are overruled.

I’ll refrain from increasing the page count of this chapter by pasting the code
for this class here (you’ve seen most of it in the previous chapters anyway). It would
be simplest to just have a look at the code of Example 16.1 instead.

Chapter 16 Putting It All Together 389

FUTURE WORK

This section is dedicated to all the things that for one reason or another I did not
cover in this book (in more detail, that is). Since all the examples in this book
have been aimed at getting one specific feature or point across, they are usually
oversimplified and not fit for a real game application. In this section I’ll address
some of these issues well enough (I hope) for you to do some of your own
research and implementation.

EXAMPLE 16.1

The final example of this book! In Example 16.1, all the functions discussed
throughout the book have been tied into one class: the Character class.

The only real new addition is having the skinned and morphed face of the character
as shown earlier in this chapter.

390 Character Animation with Direct3D

CHARACTER LEVEL-OF-DETAIL

Something I’ve left completely out of this book is Level-of-Detail (LOD). In my
examples there has been, in most cases, only one character. If you were making a
role-playing game (RPG) or a game containing a large number of characters on
the screen at the same time, then character LOD is something you would have to
address. Figure 16.3 shows the Soldier in three different levels-of-detail.

The basic idea is that you render the lower-resolution model the further away
from the camera the character is, as shown in Figure 16.4.

FIGURE 16.3
The Soldier in three different LODs.

Chapter 16 Putting It All Together 391

The concept of levels-of-detail can be applied to more than just the skinned
mesh. It can also be used with:

Mesh
Low: Low-resolution mesh, no eyes
Medium: Medium-resolution mesh
High: High-resolution mesh

Animation
Low: No animations
Medium: No animation blending/callbacks, etc.
High: Full animations

Face
Low: No morphing/low-res mesh
Medium: Render the most dominant render target instead of the original mesh
High: All facial animation features/morphing, etc.

Other
Low: No IK, physics, collisions, shadows, etc.
Medium: Some IK, physics, etc.
High: All features

FIGURE 16.4
LOD in action.

392 Character Animation with Direct3D

If the character is far away, it doesn’t make sense to do facial animation if the
player isn’t going to notice it. By just rendering the original face mesh you’ll save a
lot of power that otherwise would have been wasted on blending five different
meshes together for the final face. This concept is pretty simple and should be easy
for you to implement in your own game.

ROOT MOTION VERSUS NON-ROOT MOTION

Another concept I haven’t really touched on is the concept of root motion. With
skinned meshes you had the root bone that contained the whole hierarchy of
bones. Having root motion or not simply means whether or not this bone has any
animation tied to it. If not, this bone stays at the origin (0, 0, 0) and doesn’t move
as the animation plays (see Figure 16.5).

An animation may or may not have root motion. When a walk cycle, for example,
is captured in a motion-capture studio, it contains root motion. So when you play back
the animation on the computer, the character moves away from his or her original po-
sition (just as they do in real life). In the case of non-root motion, the character stays
at the origin as the animation plays (as if they were on a treadmill) and it is up to you,
the programmer, to move the character forward in the game as the animation plays.

FIGURE 16.5
Non-root motion versus root motion.

Chapter 16 Putting It All Together 393

Both approaches have their pros and cons, of course. With non-root motion,
the moving speed of the character is determined by the programmer. Usually, this
is set to a constant speed, which may cause the character’s feet to look like they are
sliding whenever the actual animation speed doesn’t match.

With root motion this problem is eliminated, since it is no longer up to the
programmer to move the character (that data is now stored in the animation itself),
but it also brings other problems to the table. One such problem is that it becomes
more difficult to blend animations together since that might also blend the root
motion, causing the character to end up in a different position than planned.

In the end, most games end up using both approaches. A freefall animation,
for example, where the character is plummeting to his death, is a good example
of an animation where root motion isn’t really wanted. There the animation can
just flail the characters arms while the physics engine moves the character closer
to the ground (and the big splat). On the other hand, if the character is going to
do a summersault or some similar move, these types of animations where the
character is moving quickly benefit greatly from having root motion. Having
root motion may require some extra work from you as a programmer, but in the
end it produces better-looking animation (although often enough you can get
away with using non-root motion). So it is basically up to you to decide how
picky you want to be!

ANIMATION TREES/ANIMATION GRAPH

Today, the biggest game engines organize their animations in an animation tree
or an animation graph. The animation tree or graph describes how to blend
between different animations and how to transition from one animation to
another. Imagine, for example, that your character is crouched and sneaking.
Suddenly the player wants the character to get up and start running. You can’t
just blend in the running animation, since that might end up looking silly, first
you have to run the “stand up” animation and then maybe even run the “walk”
animation before finally blending into the “run” animation.

The animation tree takes care of this by knowing which animation can transition
to which other animations. Another example is if you have a gun holstered, you can’t
play the “shoot” animation from the “stand” animation, you must first play the “draw
gun” animation, and so on. The bottom line is that once you have large numbers of
animations, you need some way of managing them. You can see an example of the
Unreal Engine 3 Animation Tree Editor in Figure 16.6.

394 Character Animation with Direct3D

The animation tree is made up of nodes, where each node describes an animation
together with some metadata describing how to play that animation (playback speed,
blend weights, looping type, etc.). The animation tree can also be connected to
external events such as play input, etc. You can also blend IK or physics simulations
in an animation tree, and much more.

Some looping animations can have an intro animation and an outro animation
as well—for example, if a character is supposed to tie his shoelace and you want this
animation to take a variable amount of time each time it’s done. You would have one
animation called “crouch” another looping animation called “tie shoe,” and finally,
an outro animation called “stand up.” If you had to do this in code you would soon
go crazy trying to maintain special case code, and so on.

FIGURE 16.6
The Unreal Engine 3 Animation Tree Editor.

Chapter 16 Putting It All Together 395

TRACK MASKS

In Chapter 5 I discussed how to blend animations together using the ID3DX-
AnimationController interface. If you want to blend an upper-body shooting
animation with a lower-body run animation, this can only be done as long as the
two animations don’t animate common bones. If, for example, the upper body
animation has keyframes holding the legs, these will still blend with the run
animation’s leg movement and the result will be something like a “half run.”

With a track mask you can play animation and specify which bones you want the
animation to affect. This way you have more control over how different animations
are blended together. Unfortunately, DirectX doesn’t support this feature, but it does
offer you all the tools you need to implement it yourself. The ID3DXSkinInfo and
ID3DXAnimationController interfaces contain all the functionality needed to imple-
ment this.

SEPARATE MESH AND ANIMATION FILES

Throughout this book I’ve been using the DirectX format to store models and
animation data. However, this file format isn’t really meant to be used for anything
other than demonstration purposes. Imagine, for example, that you have a Massive
Multiplayer Online Role-Playing Game (MMORPG) with hundreds of different
characters. Each and every one of them would need their own walk, run, sit, and
jump animations, etc. The animation data alone would take up half your hard drive
trying to run this game.

The solution is, of course, to define a common skeleton format and separate the
animation data from the skinned meshes. This approach also works well if you
have a long cut scene with huge amounts of animation data that only gets played
once in the entire game. You can then easily load the animation data for this cut
scene and then release it before continuing with the game.

The easiest (and most flexible) way to do this is probably to write your own
animation importer (from whatever animation format you prefer) and do the
bone mapping yourself. Be warned, however; this is not a small job.

396 Character Animation with Direct3D

ALAN WAKE CASE STUDY

Before ending this book I thought it would be a good idea to let you meet a real
game character. So far in this book my goal has only been to introduce you to some
certain aspects of character animation using the Soldier character. This means that
the quality of what you’ve come across in this book so far still leaves a lot to be
desired if it were ever to be used in a real game. Fortunately, the good people of
Remedy Entertainment (makers of Max Payne) have been gracious enough to let
me give you a sneak peak at the main game character of their upcoming game: Alan
Wake. I’m hoping this will give you some insight into what it takes to make a real
triple-A character these days.

Alan Wake, a bestselling writer, hasn’t managed to write anything in over two
years. Now his wife, Alice, brings him to the idyllic small town of Bright Falls to re-
cover his creative flow. But when she vanishes without a trace, Wake finds himself
trapped in a nightmare.

Word by word, his latest work, a thriller he can’t even remember writing, is
coming true before his eyes.

Find out more at: www.AlanWake.com.

FIGURE 16.7
Copyright © 2009 Remedy Entertainment.

www.AlanWake.com

Chapter 16 Putting It All Together 397

INTERVIEW WITH SAMI VANHATALO, SENIOR TECHNICAL ARTIST

Q: Would you care to make a rough guess at how many man hours were spent
modeling/texturing/creating the bone setup, etc., for him?
A: Since he’s our lead character, we’ve spent much more time on him than most
other characters. I would say the character has about 8 to 10 weeks of work put on
him. The number might even go up still, as he’s gone through a few transformations
during the development of the game.

Q: Could you tell us a bit about the different textures used for Alan Wake? How
many textures (and what dimensions) are used for the final character? Diffuse
maps, Normal maps, Specular maps, etc.
A: Most of the textures are either 512 � 512 or 1024 � 1024. At some point we’ll
probably still do an optimization pass to collapse most of the textures into a single
“Atlas” texture. You’ve pretty much answered the question of what kind of maps
we have: Diffuse map, Normal map, Occlusion map, Specular map, Wrinkle map
(Normal and Diffuse). There’s also some data baked into the RGBA color channel
of the vertices.

FIGURE 16.8
Copyright © 2009 Remedy Entertainment

398 Character Animation with Direct3D

FIGURE 16.9
Copyright © 2009 Remedy Entertainment.

FIGURE 16.10
Copyright © 2009 Remedy Entertainment.

Chapter 16 Putting It All Together 399

FIGURE 16.11
Copyright © 2009 Remedy Entertainment.

400 Character Animation with Direct3D

Q: What tools were used to create Alan? (Other tools on top of the normal ones?)
A: Not sure what exactly are the normal tools, so I’ll list some… 3dsmax, Photo-
shop, Mudbox, Crazy Bump, and a bunch of proprietary in-house helper tools for
3dsmax.

Q: Are there different versions of the character in the game, and, if so, how do they
differ?
A: There’s the in-game version with LODs as well as a separate version for cut
scenes. Biggest difference is the texture resolution. The cut scene version of the
character also uses a bit more advanced setup for the face bones.

FIGURE 16.12
Copyright © 2009 Remedy Entertainment.

Chapter 16 Putting It All Together 401

Q: Obviously Alan gets more attention in the game being the main character and all,
but how much more complex would you say Alan is compared to other non-player
characters (NPCs) in the game?
A: I would say the in-game version of Wake is about 2–3 times more complex than
an average NPC. The NPCs are a bit simpler since they have to be faster to render,
take less memory, and be easier to produce while still providing enough variations.

Q: What can you tell us about the facial animation of Alan Wake?
A: We currently have two different setups for Wake. A fairly standard FaceFX setup
for in-game needs and a more complicated setup for facial motion capture.

FIGURE 16.13
Copyright © 2009 Remedy Entertainment.

402 Character Animation with Direct3D

Q: Can you tell us a bit about the Wrinkle maps used for Alan’s face?
A: We divided the face into multiple regions. Then there are separate Wrinkle maps
(Normal and Diffuse) that are blended in to those regions. The blending in is driven
by a setup in 3dsmax. We follow certain vertices and produce a graph in the 0 to 1
range. The animator can tweak the parameters that produce the graph and choose
the vertices to follow. Once the graphs are looking “fairly good,” you can still man-
ually tweak them using 3dsmax’s regular curve-editing tools. The stress map
animation graphs are then exported using standard animation export tools, but
instead of being bone data they are just simple float tracks with spline compression.

Q: What can you tell us about the skinning of Alan?
A: Nothing special here; basic four-bones-per-vertex skinning. There’s a bunch of
helper bones around armpits, knees, and elbows, some of which are code driven so
things like IK don’t break the animations and skinning.

Q: Is Alan the most complex character you’ve ever worked on/with?
A: Absolutely, and he will hopefully continue to evolve to be even more complex
and lifelike in the future.

Q: What was the most difficult aspect of creating Alan?
A: Since he is based on a real actor, it was always a tough challenge to meet the
artistic vision of a stressed up writer, while trying to make sure he looks as close to
the original model as possible. For example, we want to maintain the similarity as
we have a tradition of composing material from photographic images with CG
materials, and the closer the two match, the better.

Q: Any other pearls of wisdom you want to part with to people attempting to create
similar characters?
A: Get a very talented person on the job. The lead modeler behind Wake is Mikko
Huovinen, who’s done outstanding work on the character.

INTERVIEW WITH HENRIK ENQVIST, ANIMATION PROGRAMMER

Q: What’s the complexity of the bone setup for Alan Wake? Does each individual
finger, for example, have bones?
A: We have currently about 160 bones in the Alan Wake character. The skeleton
has, in theory, four parts: the body, the head, the jacket, and the hands. We use
around 50 for the body, 32 for hands (16 for each hand); 24 are used to drive the
jacket, and the remaining 60 (give or take a few) are used by the head.

Chapter 16 Putting It All Together 403

There are a lot of bones for the fingers and the face since the animations for
these need to be driven quite accurately. On the other hand, the feet only have two
bones, but luckily all our characters have shoes.

In our case we went for a bone-driven face setup instead of using morph
shapes. We are using motion capture for the facial animations in the cut scenes.
For the in-game facial animations we use FaceFX, which has great support for
bone-driven facial animations.

Q: Do you use the same bone setup for all characters in the game?
A: We basically have one male and one female skeleton. The Alan Wake skeleton is
an extended version of the male skeleton. For example, the rest of the characters
don’t use the jacket. During combat scenes we need to be careful with CPU load so
the enemies that don’t need the same fidelity as Alan Wake will a have a bone setup
with less bones.

FIGURE 16.14
Copyright © 2009 Remedy Entertainment.

404 Character Animation with Direct3D

Q: How many canned animations (roughly) do you have (or planned) for Alan
Wake?
A: We estimate the final amountof in-game animations for the Alan Wake character
to be around 200. To that we will add 200 for enemy-specific animations and another
150 for females. We will also have specific context-sensitive animations.

Then we have all the cut scenes. I don’t have any number on these but I guess
in the end it is about the minutes of motion capture data and not the numbers files
when it comes to cut scenes.

Q: Are there any “handmade” animations used for Alan Wake or is it all motion
captured animations?
A: The lion’s share of the animations is motion captured, but there will be
keyframed animations as well in the game. For example, with motion capture, it is
easy to do something like a reload animation. Others, such as sliding down a hill or
falling down, are not feasible to do with motion capture. We also have keyframed
animations that are required to blend in a specific way—for example, additive
animations. An example of this would be a recoil animation. The recoil animation
is played on top of all movement animations, so special attention has to be paid to
make sure it blends correctly in all cases.

Q: What is the biggest difficulty working with such a large number of different
animations?
A: The biggest challenge is to verify that everything works together. The number
of possible transitions from one animation to another is huge. For example, a run
animation and a jump animation might look ok when viewed separately. But when
transitioning from a running to a jumping animation the character might look
weird. Before going to motion capture you basically have to define a set of base
poses and then try to stick to those; otherwise you will get strange movement in
body when switching animations. The shoulder area especially is something that
gets a lot of jerky motions if you don’t pay attention.

Q: Do you handle large “one-time only” animations differently from smaller walk
loops, etc. (i.e., animations used constantly throughout the game)?
A: The basic set of movement is always available in memory; these include all the
running, jumping, and shooting animations. Our cut scenes are loaded on demand;
otherwise these animations would eat up hundreds of megabytes of ram. Our game
engine is built from the ground up to support streaming of large amounts of data
and the animations use the same system as the rest of the engine to stream assets.

Chapter 16 Putting It All Together 405

Q: What parts of Alan use inverse kinematics?
A: Well, it would be easier to tell you what parts of Alan Wake do not use IK. But
you asked for it, so here it comes, let’s start from top down.

First, the eyes target other characters during conversations. You might think
that this doesn’t matter, but in cut scenes you will actually notice the difference. Of
course, during hectic combat scenes the eye IK is turned off.

The rest of the IK systems are then turned on and off depending on how close
the character is to the camera. This LOD system allows us to decrease the CPU load
when having lots of characters in the screen. Anyway, we have a custom IK system
for the head. In addition to the head bone we have two neck bones that turn gradu-
ally when the head turns. We also have separate ranges for looking vertically and
horizontally.

The spine is turned so that characters can aim better with weapons. The arms and
the hands are aimed toward the target during combat and there is IK that attaches the
left hand to the weapon when we use rifles or axes. When a character picks up ammo
or turns on a light, we use IK to steer the hand toward the correct target. We also use
IK to fix the shoulder pads of the jacket when the character moves his arms.

The legs have a retarget type of IK that allows the character to modify run ani-
mations into strafe-style run loops. The feet are also raised or lowered to match the
terrain. We also use foot-locking IK that prevents the feet from sliding when moving.

Q: Is there anything special to consider when you blend multiple systems together
(IK, keyframed animation, cloth simulation, etc.)?
A: As I mentioned earlier, some sort of level of detail is necessary if you have many
characters in the screen. The order in which you call the system is also important, but
with a bit of planning this won’t be any problem. The biggest problem is to get the
additive layers to work correctly. You easily get some nasty looking arm twitching if
you apply an additive animation to something that it is not intended for.

Q: What kind of dynamic animation systems do you have in place for Alan Wake?
A: The jacket is the most visible one. It is a Verlet-based cloth simulation with
some black magic on top. The hood on top of the jacket is dynamic as well. And
then we have some subtle dynamic motion for fat tissues.

Q: On the physics side, what kind of representation does Alan have?
A: We ended with a very simple representation for our ragdolls with only 11 bones.
It is fascinating how far you can get with only capsules and boxes.

406 Character Animation with Direct3D

Q: How is the player movement hooked into the animation system? Walk us
through what happens when the player presses the thumbstick on the gamepad.
A: It starts by the joypad giving a value between 0.0 and 1.0 to the animation system,
telling how much the user has pressed the stick. The system then decides if the input
is big enough for us to issue a run animation or to do a walk animation. If it is a walk
animation we scale the speed of the animation depending on how much the player
is pressing the thumbstick. If the character is standing still, we play a transition
animation before we enter the actual walk or run cycle. The velocity of the character
is embedded into the animation. We use this approach because we want to avoid
having the feet sliding against the ground. The velocity is then fed into the physics
engine, which moves the character capsule for us. There is a lot of smoothing and
clamping going on in the evaluation of the joypad; real humans can’t turn 180 degrees
in one frame, so we need to emulate some of this behavior into the input logic.

Q: What has been the biggest challenge with making Alan Wake move?
A: The hardest thing is to find a good balance between visuals and responsiveness.
When real humans move, they tend to prepare for their actions beforehand.
For example, before we jump, we squat a little bit to get some momentum before
doing the actual jump. In a game, on the other hand, we want the character to jump
immediately when the player presses the jump button. As you can see it is impossible

FIGURE 16.15
Copyright © 2009 Remedy Entertainment.

Chapter 16 Putting It All Together 407

to predict what the player will be doing next. If we want characters that look natural
we need to introduce a little bit delay to all the actions. Tuning this delay to get a good
compromise between visuals and responsiveness is a delicate task.

Assassin’s Creed is game for which the development team has done a great job
of getting stunning looking animations while keeping the controllers responsive.

Q: Any other pearls of wisdom you want to part with to those attempting to animate
characters similar to Alan Wake?
A: There is a lot material available for doing stunning-looking graphics but not
much about doing cutting-edge animations, so do your research before starting
your project. Look at how other games have done it and analyze what they are
doing right and what you could do better. Try to understand why they have taken
a specific approach. You don’t want to spend months coding a sophisticated
physical system that in the end doesn’t look natural.

FIGURE 12.16
Copyright © 2009 Remedy Entertainment.

408 Character Animation with Direct3D

FINAL THOUGHTS

The aim of this book has been to offer a brief glance into the area of character
animation for games. But what you’ve learned in this book is a long way away
from some of the next-generation characters you see in games today. Already
there are some systems out there with characters that respond much more real-
istically to physical collisions than the simple ragdoll that was implemented in
Chapter 7. See, for example, “Euphoria or Endorphin by NaturalMotion”
(www.naturalmotion.com). Lord knows you’ve only skimmed the surface of
character animation after finishing this book, and there’s plenty more out there
to learn about the topic. Luckily, you have the Internet, where you can read
more about all this.

Well, I guess this is where we must part ways. I hope you’ve enjoyed this book
and that you will have some use of whatever you learned from it.

FURTHER READING

Baille-de Byl, Penny, Programming Believable Characters for Computer Games.
Charles River Media, 2004.

Gray, Kris, Microsoft DirectX 9 Programmable Graphics Pipeline. Microsoft Press,
2003.

Liverman, Matt, The Animator's Motion Capture Guide: Organizing, Managing,
Editing. Charles River Media, 2004.

Oispa, Jason, Stop Staring: Facial Modeling and Animation Done Right. Sybex, 2007.

Parent, Rick, Computer Animation: Algorithms and Techniques. Morgan Kaufmann,
2001.

Pipho, Evan, Focus On 3D Models. Course Technology PTR, 2002.

Young, Vaughan, Programming a Multiplayer FPS in DirectX. Charles River Media,
2004.

Williams, Richard, The Animator’s Survival Kit. Faber & Faber, 2002.

www.naturalmotion.com

409

Numbers
3D games, early examples of, 4
3D Studio Max, haircut created in,
367–368

A
AABB (Axis-Aligned Bounding Boxes),

versus OBB, 119–120
acceleration, considering for rigid bodies,
126–127
AddForces() function, using in physics

simulation, 125
AddTangentBinormal() function,
implementing, 266–269
AdvanceTime() function, 81, 95
Alan Wake character

canned animations, 404
complexity of, 401
complexity of bone setup, 402–403
facial animation of, 401
hours spent on, 397
skinning, 402
textures used for, 397
tools used for, 400
use of IK, 405
versions of, 400

Alignment rule, applying to “Boids”
steering behavior, 297–298

Alone in the Dark, release of, 4
Alt key. See keyboard shortcuts
angles, calculating for vectors, 116
ANGRY frame, example of, 5–6
animation callback events, 92–95
animation channels, using with face
controller, 205–207
animation controllers

cloning, 82
interface, 79
tracks in, 86–88

animation data, loading, 79–80
animation files, separating from mesh

files, 395
animation graphs, organizing animations

in, 393–394
animation keys, calculating timestamps

of, 77
animation playback, speed of, 87. See also

playback type
Animation Set track property, 86
animation sets

assigning to tracks, 87
compressing, 90–92
differences in, 79
identifying for tracks, 88
retrieving for blending, 88–89

animation trees, organizing animations
in, 393–394

Index

animations
adding callback keys to, 94
adding keyframes to, 76
blending, 87–89
looping, 394
playing, 80
updating and playing, 80
See also tracks

Application class
Init() function of, 22–24
using, 19–22

Application Wizard, using in Visual
Studio, 17–18

ApplyArmIK() function, adding to
InverseKinematics class, 248–251

ApplyLookAtIK() function, 244–245
arm

calculating reach of, 246–247
joints in, 35–36
See also upper arm bounding box

atan2() function, using with Eye class, 197
Autodesk’s Mudbox Web site, 280
Axis-Aligned Bounding Boxes (AABB),

versus OBB, 119

B
ball joint, 148
barycentric coordinates, calculating, 329
base meshes

comparing morph targets to, 182
setting as stream, 179
transformation for face factory, 210
using with Face class, 199
using with morph targets, 171

BeginScene() function, using with
rendering loop, 26–27

bind pose, setting up for ragdoll, 157
binormals, calculating in vertex shaders,

274
blended vertex, creating, 168

blink animation channel, 205–206
blocks, character built from, 4–5
bodies. See rigid bodies
Boid class code, 299, 301–303
bone bounding volumes, using in

intersection tests, 322
bone hierarchies

building with D3DXFRAME structure,
37–40

first child and sibling pointers in, 38
loading, 40–41
loading for animations, 79
overview, 35–36
rendering static meshes in, 67–70
root node in, 38
traversing, 38, 40
updating for ragdoll animation, 162–164
updating in ragdoll animation, 158–159
See also ID3DXAllocateHierarchy

interface
bone orientation, getting from OBB,

161–162
Bone pointer, using with

SkinnedMesh::Render(), 58
bone position

calculating for ragdoll, 160
getting from OBB, 159–161
See also position

Bone structure, creating, 39
bone transformations, array of, 60
bone weight, implying, 48
BoneHierarchyLoader class, defining,

42–43
boneMatrixPtrs member of BoneMesh, 51
BoneMesh class

adding CalculateDecalUV() function to,
342–343

adding decal functionality to, 322–324
CreateDecalMesh() function added to,

333–336

410 Index

BoneMesh object
influence of bones, 56
loading mesh into, 52
rendering with software skinning, 55–56

BoneMesh structure, defining, 50–51
boneOffsetMatrices member of

BoneMesh, 51
bones

fitting OBB to, 153
for human arm, 35
influence on vertices, 47–48
manipulating with FK, 239
placing in hierarchies, 46
rotating from original orientation,

161–162
transformation matrices for, 37

bounding sphere class, using with control
hair, 371

bt core classes. See Bullet physics engine
btDynamicsWorld object, setting up,

144–146
bullet holes, adding to walls, 318
Bullet libraries

building, 141–142
linking to projects, 143

Bullet physics engine
constraints supported by, 149
core classes, 139
creating constraints with, 149
creation of, 139
downloading, 140
helper functions, 140
integrating into projects, 142–144
See also ragdoll animation

Bullet source folder, adding to VC++
directories, 142–143

bump mapping, normal mapping as, 256

C
C++ examples, coding conventions for,

8–9
callback handler

creating, 93–94
sending to AdvanceTime() function, 95

callback keys
adding to animations, 94–95
defining, 92

cameras
location for specular highlights, 281–282
using in optical Mocap systems, 97–98

CCD (cyclic coordinate decent), applying
to IK, 240

CD contents
animation blending, 90
ANIMATION class, 778
animation controllers, 83
animation set compression, 96
Boids flocking behavior, 303
bone hierarchy loaded from .x file, 47
Bullet physics engine, 147
Character class, 389
character loaded and rendered, 59
constraints in Bullet library, 149
crowd simulation, 308, 312
decal for character, 345
Eye class, 198
Face class, 204
FaceController classes, 207
FaceFactory class, 215
GetFace() function of BoneMesh class,

325
hair patch, 367
haircut animation, 375
ID3DXAnimationController, 81
IK (inverse kinematics), 246
lip-syncing system, 234

Index 411

morph targets, 173
morphing animation on GPU, 183
normal maps, 276
OBB class and OBB-OBB intersection

test, 124
PARTICLE class, 131
particles connected with springs, 134
phonemes and visemes, 225
ragdoll animation, 164
ragdoll built from OBB, 158
skinned decals, 338
skinned meshes, 71
skinning, 65–66
software morphing, 170
specular highlights, 287
Two-Joint IK solution, 252
werewolf morphing character, 191
wrinkle maps, 291
See also code samples

character animation
defined, 2
history of, 2–5
resources, 408

Character class
defining, 387–388
excerpt, 384

CharacterDecal class code, 337
characters

building from blocks, 4–5
conveying emotions in, 194
LOD (Level-of-Detail), 390–392
rendering decals on, 318

class names, coding convention for, 9
Cleanup() function, calling, 20
CloneMesh() function versus

UpdateSemantics(), 270
code samples

AABB point intersection test, 121–122
AddTangentBinormal() function,

266–269

animation blending, 89
animation controllers cloned, 82
animations with keyframes, 76
Application class, 20
ApplyLookAtIK() function, 244–245
atan2() function for Eye class, 197
background color of window, 26
binormal calculation, 274
Boid class, 299
Boid::Update() function, 301–303
bone hierarchy traversal, 38–40
bone in hierarchy, 46
bone orientation from OBB, 161
Bone structure for D3DXFRAME, 39
BoneHierarchyLoader, 42–43
BoneMesh class with Calculate-

DecalUV() function, 342–343
BoneMesh class with CreateDecal-

Mesh() function, 333–336
BoneMesh rendered with software

skinning, 55–56
BoneMesh structure, 50–51
btDiscreteDynamicsWorld object,

144–145
Bullet Physics Library helper functions,

140
callback handler, 93–94
Callback keys, 92
callback keys for animations, 94
Character class, 384
CharacterDecal class code, 337
Compress() function, 90–91
control hair GetBlendedPoint() helper

function, 355–356
control hair GetBlendIndices() helper

function, 354
control hair GetSegmentPercent()

helper function, 354
control hair with bounding sphere class,

371–372

412 Index

ControlHair class, 353
ControlHair class with Update-

Simulation() function, 372–373
ConvertToIndexBlendedMesh()

function, 61
CreateFrame() function, 43–44
CreateMeshContainer() function,

62–63, 68–69
CreateWindow() function, 24
CrowdEntity class, 304–305
CrowdEntity class with Update()

function, 306–307
D3DVERTEXELEMENT9 structure,

174–175
D3DXCreateEffectFromFile() function,

29
D3DXFRAME structure, 37
D3DXIntersect() function for terrain, 310
D3DXKEY_QUATERNION, 75–77
D3DXKEY_VECTOR3, 75–77
D3DXLoadMeshFromX() function,

27–28
D3DXMESHCONTAINER structure, 50
D3DXVec3BaryCentric() function, 329
decal mesh with faces and vertices, 332
decal rendering, 344
decal with index blended vertex, 332
decals in BoneMesh class, 323–324
DestroyFrame() function, 43–44
device caps for skinning, 60
DirectX device initialization, 25–26
DrawIndexedPrimitive() function,

187–188
Effects file, 29
effects with transformation matrices, 30
Eye class, 196–197
Face class implementation, 203
Face class with SetStreamSources()

function, 382–383
FaceController class, 206

FaceController::Speak() function,
232–233

FaceFactory class, 210–211
FaceHierarchyLoader class, 200–201
Flock class for Boids, 300–301
Hair class, 374
hair patch with HLSL helper function, 365
hair patch with vertex data, 365–366
hair simulation, 372–373
hair strips filling mesh object, 360–362
HairPatch class, 357–358
HairPatch class with GetBlendedPoint()

helper function, 358
HairPatch class with GetStripPlace-

ments() function, 359–360
HairVertex object, 364
hinge constraint in Bullet physics

engine, 149
ID3DXAnimationController, 79
ID3DXKeyframedAnimationSet

interface, 76
ID3DXSkinInfo interface, 48
ID3DXSkinInfo::UpdateSkinnedMesh()

function, 56
InverseKinematics class, 242–243
InverseKinematics class with

ApplyArmIK() function, 248–251
keyframed animation set compression,

91–92
lip-syncing, 223
LoadHair() function excerpt, 369–370
mesh adjacency information, 327
mesh converted for normal mapping,

265–270
mesh extracted from D3DXFRAME

hierarchy, 202
mesh loaded into BoneMesh object, 52
mesh-neighbor extraction, 327–328
morph targets blended, 172–173
morph targets with weights, 180

Index 413

morph vertex declaration, 177–180
morphed mesh, 168–169
morphing vertex shader structures,

180–181
normal-mapped face with specular map,

285–286
OBB class, 120–121
OBB class for ragdoll animation, 159–160
Obstacle class for crowd simulation, 309
PARTICLE class, 128–129
particle-plane collision response, 130
PHYSICS_ENGINE class, 125
PlaySound() function, 224
point transformed to vector in tangent-

space, 265
Point-OBB intersection test, 122–123
position, velocity, and acceleration,

126–127
quaternion storage, 117–118
ragdoll animation with updated bone

hierarchy, 158–159
RAGDOLL class, 151–152
RagDoll class constructor, 156–157
ray intersection tests, 319
ray-mesh test, 319–320
rendering loop, 26–27
rendering meshes, 30–31
rigid body for dynamics world, 145–146
rigid body for OBB class, 146
SetEntityGroundPos() function for

Crowd class, 311–312
SetPivot() function opposite, 160–161
skeletal/morphing vertex format, 186
skeletal/morphing vertex shader, 188–190
SkinnedMesh class, 45
SkinnedMesh class loading function,

45–46
SkinnedMesh::Render() function for

HLSL shader, 65–66
skinning information, 53–54

skinning vertex shader, 63–65
specular highlight calculation, 283
specular highlight halfway vector, 282
SPRING class, 133–134
static mesh, 27
stl::vector class, 13
streams for skeletal/morphing vertex

format, 186–187
track state, 88
UpdateSkeleton() function for ragdoll,

162–163
upper arm bounding box, 153–154
vector calculation for decal UV

coordinates, 341
vertex buffer assigned to stream, 179
vertex declaration compiled, 179
vertex declaration for morphed face,

381–382
vertex declaration for skinned face,

381–382
vertex declaration from mesh, 266
vertex declaration of Face class, 270–271
vertex definition, 174
vertex shader, 181–182
vertex shader and declaration, 272
vertex shader reading streams and

outputs, 384–386
Viseme class, 222
voice sample average amplitude, 232
VS_OUTPUT structure for normal

mapping shader, 272–274
WaveFile class, 229
WaveFile class with Load() function,

229–231
window class, creating and registering,

22–23
window procedure, 23
WinMain() function, 21–22
world space hit location, 328
wrinkle map pixel shader, 290–291

414 Index

.x file for ID3DXAllocateHierarchy,
44–45

See also CD contents
coding, conventions for, 8–9
Cohesion rule, applying to “Boids”

steering behavior, 298
collision response, described, 130
collisions, particles and forces related to,

129
CombinedTransformationMatrix, storing

pointer to, 56
Compress() function, calling, 90–91
compressed animation sets

adding callback keys to, 94–95
creating, 90–91

compression schemes, availability of, 227
consonants, phonemes for, 219–220
constant names, coding convention for, 9
constants, use of, 60
constraints

creating with Bullet physics engine, 149
using in ragdoll animation, 148–149

control hair
GetBlendedPoint() helper function,

355–356
GetBlendIndices() helper function, 354
GetSegmentPercent() helper function,

354
representing, 352–353
See also Hair class
control hair table, adding to shader, 364

control hairs
animating, 370–373
blended position of, 366
cubic interpolation, 355

ControlHair class, UpdateSimulation()
function added to, 372–373

ControlHairTable, looking up hair points
in, 364

ConvertToIndexBlendedMesh() function,
61

Coumans, Erwin, 139
CreateBoneBox() function, using with

ragdoll, 157
CreateDecalMesh() function, adding to

BoneMesh class, 333–336
CreateFrame() function, custom

implementation, 43–44
CreateHinge() function, using with

ragdoll, 157
CreateMeshContainer() function, 52–54,

62–63, 68–69
using with FaceHierarchyLoader class, 201
CreateMorphTarget() function, using

with FaceFactory, 212–213
CreateTwistCone() function, using with

ragdoll, 157
CreateWindow() function, using, 24
Croft, Laura, 36–37
cross products, calculating for vectors, 116
Crowd class, SetEntityGroundPos()

function in, 311–312
crowd simulation

overview, 304
resources, 313
using smart objects in, 308–310

CrowdEntity class code, 304–305
currentBoneMatrices member of

BoneMesh, 51
cyclic coordinate decent (CCD), applying

to IK, 240

D
D3DVERTEXELEMENT9 structure, 174,

177–180
D3DX library, components of, 15
D3DXATTRIBUTERANGE objects, array

of, 54

Index 415

D3DXCreateEffectFromFile() function, 29
D3DXFRAME hierarchy, extracting

meshes from, 201–202
D3DXFRAME structure

overriding, 42
overview, 37–40
PrintHierarchy() function, 39
transformation matrices for, 39

D3DXIntersect() function
for ray-mesh test, 319–321
for terrain, 310

D3DXINTERSECTINFO structure, hits
stored in, 320–321, 324

D3DXKEY_CALLBACK structure, 92
D3DXKEY_QUATERNION structure,

75–77
D3DXKEY_VECTOR3 structure, 75–77
D3DXLoadMeshFromX() function, using,

27–28
D3DXMESHCONTAINER structure

overloading for skinned mesh, 50
overriding, 42

D3DXVec3BaryCentric() function code,
329

data input streams
creating from meshes, 177
interpreting to vertex data, 174–175

Day of Wrath, 7
decal functionality, adding to BoneMesh

class, 322–324
decal meshes

brute force selection of, 326
creating faces and vertices for, 332
creating queue of faces for, 336
selecting triangles for, 330–331
with vectors, 342
See also meshes

decal texture, example of, 339–340
decal UV coordinates

calculating, 339–346
over curved surface, 346

decals
applied to scenes, 316–317
calculating hit positions for, 328–330
CharacterDecal class, 337
common use of, 318
copying skinning information for,

331–336
defined, 316
enhancing, 337–338
index blended vertex for, 332
rendering, 343–344
rendering on characters, 318

DefWindowProc() function, returning
result of, 23–24

delta quaternion, calculating, 161–162.
See also quaternions

DestroyFrame() function, custom
implementation, 43–44

Device, storing as global pointer, 26
device caps, checking for skinning, 60
DeviceGained() function, capabilities of, 20
DeviceLost() function, capabilities of, 20
diphthongs, phonemes for, 219
directions, transforming with vectors,

115–116
Direct3D resources, 32
DirectX device, initializing, 25–26
DirectX libraries

linking, 18–19
using, 19

DirectX SDK, downloading, 15
DirectX9 (DX9), benefits of, 12
DOOM, release of, 4
DrawIndexedPrimitive() function,

187–188
DVD contents. See CD contents
DWORDs, default invalid value for, 324
DXUT framework, recommendation of,

20

416 Index

E
Earth and Sun, gravitational pull between,

112
effects

loading, 28–30
rendering meshes with, 30–31

elbow, bending, 248–251
emotion animation channel, 205–206
emotions

combining verbal messages with, 195
conveying in characters, 194

Enabled track property, 86
EndScene() function, using with

rendering loop, 26–27
Enqvist, Henrik interview, 402–407
enumeration, using with visemes, 224
equations. See formulas
Euler angles

explained, 114
Gimbal locks resulting from, 75, 120

events, animation callbacks, 92–95
examples. See CD contents; code samples
examples folder, contents of, 31
eye, creating rotation matrix for, 197
eyeball mesh, creating, 196–197

F
F keys. See keyboard shortcuts
Face class

versus FaceFactory class, 210
implementing, 202–205
members of, 203
render targets for, 199
SetStreamSources() function added to,

382–383
vertex declaration of, 270–271

face factory, render targets for, 209
face generation, process of, 209
FaceController class, 205–207

FaceController::Speak() function, 232–233
FaceFactory class

code, 210
custom faces generated by, 213–214

FaceHierarchyLoader class, 200–201
faces

attaching to skinned meshes, 381
causing to “mime” words, 224
skinning and morphing, 386–387

facial animation
of Alan Wake character, 401
wrinkle maps used for, 402

facials expressions overview, 194–196
field of view (FoV), limiting in IK, 241
first person shooter (FPS) games, ragdoll

animation in, 137
FK (forward kinematics) versus IK,

238–240
float array, creating for FaceFactory class,

212
Flock class, creating for Boids, 300–301
flocking behaviors

“Boids,” 297–303
overview, 296

forces
before and after collision, 129
effect on rigid bodies, 112–114
overview, 111–112
in physics simulation of spring, 132
summing up for Boid, 298–299

formulas
acceleration of rigid bodies, 126
angle calculation for vector, 116
barycentric coordinate calculation, 329
control hair cubic interpolation, 355
Law of Cosines, 247–248
law of gravity, 111
morph targets, 172
morph targets blended with weights, 168
Newton’s second law of motion, 111
position of rigid bodies, 126

Index 417

quaternion definition, 117
quaternions, 114
RGB calculation for normals, 261
TBN-Matrix, 265
velocity of rigid bodies, 126
Verlet integration, 128
vertex transformation, 48

Forsyth, Tom, 262
forward kinematics (FK) versus IK, 238
Fourier Transform, running speech data

through, 226
FoV (field of view), limiting in IK, 241
FPS (first person shooter) games, ragdoll

animation in, 137
full effect (.fx) code, reference for, 63
function keys. See keyboard shortcuts
function names, coding convention for, 9
.fx (full effect) code, reference for, 63

G
GetAnimationSet() function, 80
GetBlendedVertex() function, using with

hair patch, 364
GetForce() function, using with Obstacle

class, 309
GetNeighbors() function

using with Boid object, 301
using with Flock class, 301

GetSourceTicksPerSecond() function, 77
GetTrackAnimationSet() function, 88
Ghost class, inheritance from IMonster

interface, 14
Gimbal lock, occurrence of, 75
global variables, coding convention for, 9
Goblin class, inheritance from IMonster

interface, 14
GPU (graphics processing unit),

morphing animation on, 173–174, 183

Graham, Sir, 2–4
gravity, Newton’s law of, 111

H
hair animation resources, 351, 377
Hair class

code, 374
LoadHair() function of, 369–370

hair format, binary, 368–369
hair modeling, importing splines for, 351
hair patch

building, 356–357
HLSL helper function for, 365
interpreting vertex data for, 365–366
rendering, 362–366

hair simulation, 372–373
hair strands versus strips, 350–351
hair strips

filling mesh object with, 360–362
placing, 359–360

haircut, creating, 367–370
haircut animation, 376
HairPatch class code, 357–358
hairs

control versus interpolated, 351
getting points of, 364

HairVertex structure code, 363–364
Half-Life, release of, 6
Hamilton, William, 114
HandleCallback() function, 94
HAPPY frame, example of, 5–6
hardware skinning

index blended meshes, 61–63
Matrix Palette, 60–61
overview, 49
skinning vertex shader, 63–67
versus software skinning, 60
steps required for, 59–60

418 Index

hardware-skinned character, intersecting,
321. See also skinned meshes

head bone
calculating forward vector of, 243–244
calculating rotation angle for, 245
locating in IK, 243

head forward vector, calculating, 245
height maps versus normal maps, 258
hierarchies. See bone hierarchies
High Level Shading Language (HLSL)

resources for, 30
use of, 8–9

hinge constraint, creating in Bullet
physics engine, 149

hinge joint, 148
hit position

calculating for decals, 328–330
distance from vertex, 339

HLSL (High Level Shading Language)
resources, 30
use of, 8–9

HLSL helper function, using with hair
patch, 365

HLSL shaders code sample, 63–65
Hooke’s Law, 132
human arm, bones related to, 35
Hungarian notation standard, use of, 8–9

I
ID3DXAllocateHierarchy interface

CreateFrame() function, 41
CreateMeshContainer() function, 41,

49, 52
DestroyFrame() function, 42
DestroyMeshContainer() function, 42
implementing functions of, 42–46
loading .x file for, 44–45
See also bone hierarchies

ID3DXAnimationCallbackHandler
interface, 93–94

ID3DXAnimationController interface,
79–80

ID3DXCompressedAnimationSet
interface, 90–92

ID3DXKeyframedAnimationSet
interface, 76–78

ID3DXSkinInfo interface
creating, 48
pointer to, 49

ID3DXSkinInfo::ConvertToIndexed-
BlendedMesh() function, 61

ID3DXSkinInfo::UpdateSkinnedMesh()
function, 56

identity matrix, applying, 119
IK (inverse kinematics)

applied to Alan Wake character, 405
versus FK, 238–240
importance of, 238
Look-At, 240–241
two-joint, 246–251
resources, 253

IK problems, solutions to, 240
IMonster interface, implementing, 14–15
Index Blended Meshes, converting meshes

to, 69
index blended meshes, using in hardware

skinning, 61–63
Init() function

calling for Application class, 20, 22–24
using with Eye class, 196–197

intersection data, obtaining, 322
interviews

Enqvist, Henrik, 402–407
Lapland Studio, 101–106
Vanhatalo, Sami, 397–402

InverseKinematics class
ApplyArmIK() function added to,

248–251
calculating head forward vector in, 245
code samples, 242
initialization code, 242–243

Index 419

J
Jacobian matrix, applying to IK, 240
joints

applying rotation to, 251
in arm, 35–36
treating as hinges, 246–247
using constraints with, 148
See also Two-Joint IK

K
KD-trees resource, 301
keyboard shortcuts

project properties, 18
properties, 18

Quit() function, 20
keyframe animation, origin of, 74
keyframe structures, types of, 75
keyframed animations, compressing,

90–92
keyframes, adding to animations, 76
keyframing

examples of, 74–75
power of, 74

Kings Quest: Quest for the Crown, 2–3

L
Lapland Studio interview, 101–106
Law of Cosines formula, 247–248
LERP (linear interpolation), using in

morphing animation, 168
libraries, adding to applications, 18
light calculation

for specular highlight, 283
for vertex lighting, 262

light direction, transforming to tangent-
space, 264

linear interpolation (LERP), using in
morphing animation, 168

linker, using with DirectX libraries, 18

lip-syncing
automatic, 232–234
creating for game characters, 221
functions added for, 222–223
system, 234

listings. See code samples
Load() function, using with WaveFile

class, 229
LoadHair() function excerpt, 369–370
LOD (Level-of-Detail), applying to

characters, 390–392
LookAt() function, using with Eye class,

196–197
Look-At inverse kinemetics, 240–241,

248–251
Loom, release of, 4
low-polygon mesh, using with normal

maps, 278–279
LPD3DXMESHCONTAINER pointer,

contents of, 37
lpfnWndProc variable, using, 23

M
Maniac Mansion, release of, 4
Manninen, Jouko, 101–106
materials member of BoneMesh, 51
matrices, applying identity matrices for,

119
Matrix Palette

relationship to vertices, 62
using in hardware skinning, 60–61

matrix pointers, setting up for software
skinning, 55–56

MAX and MIN vector, AABB as, 119
Melody tool Web site, 281
member pointers, coding convention for, 9
member variables, coding convention for, 9
mesh container structure, creating, 50
mesh files, separating from animation

files, 395

420 Index

meshes
blending in morphing animation, 5
calculating adjacency information for,

326–327
components of, 47
containing skinning information,

187–188
converting to Index Blended Meshes, 69
converting to support normal mapping,

265–270
creating data input streams from, 177
extracting from D3DXFRAME

hierarchy, 201–202
extracting neighbors for, 327–328
getting vertex declarations from, 266
loading, 27–28
loading and rendering, 68–70
loading for bone hierarchies, 79
loading from single .x file, 200–201
loading into BoneMesh objects, 52
ray intersection of, 320
rendering with effects, 30–31
storing for skeletal/morphing vertex

format, 186
updating in software skinning, 56
using with normal maps, 277–278
See also decal meshes; morphed mesh;

skinned meshes; static meshes
mesh-ray intersection test, accessing, 49
Mocap systems

comparing, 100–101
interview with Lapland Studio, 101–106
magnetic, 98–99
marker-less, 98
mechanical, 99–100
optical, 97–98
overview, 96–97

Monkey Island, release of, 4
morph targets

blending, 168, 172–173

comparing to base mesh, 182
creating random weights for, 180
multiple, 170–173
for werewolf, 184

morph vertex declaration, creating,
177–180

morph weights, applying, 171–172
morphed and skinned face, 386–387
morphed mesh, creating, 168–169,

172–173. See also meshes
morphing animation

combining with skeletal animation, 185
explained, 5
versus skeletal animation, 6, 168
See also skeletal/morphing

morphing vertex shader, input and
output structures, 180–181

motion
Newton’s laws of, 111
root versus non-root, 392–393

motion capture. See Mocap systems
Mudbox Web site, 280

N
Newton’s laws

of gravity, 111
of motion, 111

Niskanen, Jari, 101–106
Normal Mapper tool Web site, 280
normal mapping, 256

with animated light source, 276–277
constructing TBN-Matrix for, 265
converting mesh for, 265–270
resources, 280
versus vertex lighting, 256–258, 275

normal mapping shader, 270–275. See also
shaders

normal maps
converting to specular maps, 284–286
creating, 277–281

Index 421

encoding, 260
versus height maps, 258
object- and tangent-space types of,

258–260
pitfalls of, 279
using, 262–264

normals
calculating from low- and high-polygon

meshes, 279
encoding as color, 261–262

NumAttributeGroups member of
BoneMesh, 51

NVidia’s Melody tool Web site, 281

O
OBB (Oriented Bounding Boxes)

describing worlds with, 119–124
fitting to bone, 153
getting bone orientation from, 161–162
getting bone position from, 159–161
placing for ragdoll animation, 152
using SatsfyConstraints() function with,

125
OBB class

creating rigid body for, 146
for ragdoll animation, 159–160

objects
in physics simulation, 125
rigid/solid, 67–68
See also smart objects

Oblivion, faces generated in, 208
Obstacle class for crowd simulation, 309
OGG compression scheme, downloading,

227
openFaces queue, using with decal mesh,

336
OriginalMesh member of BoneMesh, 51

P
Pac-Man, development of, 2–3
pAlloc pointer, using with ID3DX-

AllocateHierarchy, 45
PARTICLE class, 128–129
particle-plane collision response, 130
particles

calculating velocity for, 131
before and after collision, 129
connecting with springs, 132–133
overview, 128–131

per-vertex animation. See morphing
animation

Philosophiae Naturalis Principia
Mathematica, 110

phonemes
for consonants, 219–220
depicting with waveforms, 220
for diphthongs, 219
versus visemes, 217
for vowels, 218
See also voice sample

physics animations, describing object
orientation in, 114

physics overview
effect of forces on rigid bodies, 111–112
forces, 111–112
Newton’s laws of motion, 110–111
quaternions, 114–119
resources, 135

physics simulation
of control hairs, 370–371
describing objects in, 125
of spring, 131–134

PHYSICS_ENGINE class, simulating
PARTICLE class with, 128–129

PHYSICS_OBJECT base class
extending with PARTICLE class, 128–129
extending with SPRING class, 133–134

422 Index

picking, defined, 318
ping-pong playback, creating animation

sequence with, 77
pivot point

calculating for rigid bodies, 156
supplying for ragdoll animation, 160–161

pixel shaders
calculating specular highlights in, 283
for normal mapping shader, 274–275
for normals, 261–262
for skeletal/morphing vertex shader, 190
using with normal maps, 264
for wrinkle map, 290–291
See also shaders

Pixologic’s ZBrush Web site, 280
playback type

ping-pong, 77
using with animation sets, 76
See also animation playback

PlaySound() function, 224
point intersection, AABB versus OBB,

121–122
Point-AABB intersection test, 121–122
pointer variables, coding convention for, 9
pointers

adding to OBBs in Bone structure, 154
storing to CombinedTransformation

Matrix, 56
Point-OBB intersection test, 122–123
points, transforming, 115
polygons. See low-polygon mesh
position, considering for rigid bodies,

126–127. See also bone position
Position track property, 86
ppAllHits buffer, using with ray

intersection tests, 320–321
Present() function, using with rendering

loop, 26–27
Principia, 110

PrintHierarchy() function, using with
D3DXFrame, 39

Priority track property, 86
procedural animation, ragdoll animation

as, 137
projects, setting up in Visual Studio

Express 2008, 15–19
prop position/orientation, recording with

Mocap, 103
Pythagorean Theorem, part of Law of

Cosines as, 247

Q
Quake, use of Voodoo chipset by, 4
quaternions

defining rotations with, 117
helper functions, 118
overview, 114–119
resource for, 119
storing, 117–118
transforming unit vectors with, 116–117
using with keyframes, 75
using with OBB, 120–124
See also delta quaternion

Quit() function, calling, 20

R
ragdoll animation

calculating bone position in, 160
completing, 163
creating rigid bodies for, 145–146
as procedural animation, 137
resources, 165
updating bone hierarchy for, 158–159,

162–164
using constraints in, 148–149
See also Bullet physics engine

RAGDOLL class, twist cone constraint in,
154–156

Index 423

RagDoll class constructor, 156–157
ragdoll setup, 147–148
ray, creating for terrain mesh, 311
ray hit, calculating location of, 328–330
ray intersection tests

collection of, 318
implementing, 319

references. See resources; Web sites
Remedy Entertainment, 396
Render() function

capabilities of, 20
declaring in IMonster class, 14
in physics simulation, 125
using with Eye class, 196–197
using with Hair class, 374
using with SkinnedMesh class, 57–58

render targets
animation channels as, 205–207
for face factory, 209
using with Face class, 199

rendering
meshes with effects, 30–31
resources for, 24

rendering loop, functions for, 26–27
resources

character animation, 9, 408
crowd simulation, 313
Direct3D, 32
hair animation, 351, 377
HLSL (High Level Shading Language), 30
IK (inverse kinematics), 253
KD-trees, 301
normal mapping tools, 280
physics primer, 135
ragdoll simulation, 165
for rendering, 24
skeletal animation, 107
skinned meshes, 71
speech mapping, 235
WAVE format, 229

wrinkle maps, 293
See also Web sites

Reynolds, Craig, 297
RGB calculation for normals, 261
rigid bodies

adding to dynamics worlds, 145–146
calculating pivot point for, 156
creating for ragdoll simulation, 145–146
defined, 110
effect of forces on, 111–112
versus non-rigid body, 110
for OBB class, 146
physical properties of, 126–127
resource for, 127

rigid/solid objects, using, 67–68
robot arm, 67–68
root versus non-root motion, 392–393
rotation

applying to joints, 251
defining with quaternion, 117
describing with keyframe, 75

rotation matrix, creating for eye, 197
rotation transformation matrices, using,

114

S
S (scale) factor, calculating for vectors, 115
SatisfyConstraints() function

using in physics simulation, 125
using with SPRING class, 134

scale (S) factor, calculating for vectors, 115
SCUMM engine, development of, 4
sentences. See phonemes
Separation rule, applying to “Boids”

steering behavior, 297
SetCallbackKey() function, 94
SetEntityGroundPos() function, using

with crowd class, 311–312
SetPivot() function, doing opposite of,

160–161

424 Index

SetTrackAnimationSet() function, 80
shaders

adding control hair table to, 364
skinning vertex, 63–67
See also normal mapping shader; pixel

shaders; vertex shaders
shapeShift variable, 190
shoulder, rotating, 248–251
Sims series, smart objects in, 308–309
skeletal animation

combining with morphing animation, 185
example of, 6–7
explained, 6
versus morphing animation, 168
resources, 107

skeletal/morphing
vertex format, 185–188
vertex shader, 188–190
See also morphing animation

skeletons, bone hierarchies of, 35–36
skinned and morphed face, 386–387
skinned character, wireframe rendering

of, 6–7
skinned meshes

applying LOD to, 390–391
attaching faces to, 381
combining with rigid/solid objects, 68
loading and rendering, 68–70
loading for software skinning, 50–55
overview, 34–35
rendering instances of, 82
rendering with software skinning, 55–60
resources, 71
setting skinning information from,

383–384
of Soldier character, 8
updating, 57–58
See also hardware-skinned character;

meshes
skinned parts, lack of, 67–70

SkinnedMesh class
creating, 45
loading function, 45–46

SkinnedMesh::Render() function, 57–58
adding static meshes to, 69–70
editing for HLSL shader, 65–66

SkinnedMesh::UpdateMatrices()
function, using in IK, 245

skinning, software versus hardware, 35, 49
skinning information

checking availability of, 54
copying for decals, 331–336
finding in meshes, 187–188
setting, 383–384
storing, 53–54

skinning vertex shader, 63–67
smart objects, using in crowd simulation,

308–310. See also objects
software skinning

versus hardware skinning, 60
loading skinned mesh for, 50–55
overview, 49
rendering skinned mesh with, 55–60
updating meshes in, 56

Soldier character
design for, 7
model complexity of, 7
skinned mesh of, 8
in three LODs, 390

sound and speech libraries, availability of,
224. See also WAVE format

Speak() function, calling, 224, 232–233
specular colors, considering for materials,

284
specular highlights

calculating in pixel shaders, 283
camera location considerations, 281–282
determining size of, 283
on different surfaces, 283
halfway vector, 282

Index 425

specular maps
converting normal maps to, 284–286
using, 284–286

speech. See phonemes; visemes
speech analysis, resource for, 226
speech and sound libraries, availability of,

224
speech animation channels, 205–206
speech, lip-syncing. See lip-syncing
speech mapping resources, 235
speech sample, waveform from, 226
Speed track property, 86
SPEEX compression scheme,

downloading, 227
splines, importing for hair modeling, 351
spring, physics simulation of, 131–134
SPRING class, 133–134
static meshes

rendering in bone hierarchies, 67–70
static mesh, loading, 27
See also meshes

static variables, coding convention for, 9
STDMETHOD macro, translation of, 43
steering behaviors

“Boids,” 297–303
implementing for crowd simulation,

306–307
STL vector, example of, 14–15
stl::vector class, simple use of, 13
stream source 0, setting mesh as, 187–188
streams, creating for skeletal/morphing

animation, 186–187
Sumotori Dreams game, downloading, 138
Sun and Earth, gravitational pull between,

112
swarm behaviors

“Boids,” 297–303
overview, 296

T
The Tales of Bingwood, animation

sequence of, 4
talking. See phonemes
tangent-space

light vector transformed to, 264
transforming points to vectors in, 265
using with normal maps, 262–263

target meshes
creating for faces, 213
loading from single .x file, 200–201

TBN-Matrix, constructing, 265
terrain, following, 310–312
text-to-speech applications, availability

of, 221
textures member of BoneMesh, 51
ticks per second, retrieving for

animations, 77
time steps, managing for animations,

77–78
timestamps, calculating for animation

keys, 77
Tomb Raider, mesh objects for bones in, 36
track masks, features of, 395
track state, retrieving, 88
tracks

in animation controllers, 86–88
assigning animation sets to, 87
blending animations in, 87
identifying for animation sets, 88
setting animations for, 80
See also animations

transformation matrices
updating, 81
uploading to Effect, 30
for vertices, 48

triangles
including in meshes, 47
selecting for decal mesh, 330–331
vertices of, 47

426 Index

Tuppurainen, Markus, 7
tweening, defined, 74
twist cone constraint, creating in

RAGDOLL class, 154–156
Two-Joint IK

implementing, 248–252
solving problem with, 246–251
See also joints

U
unit vector, component range of, 261
Unreal Engine 3 Animation Tree Editor,

393–394
Update() function

for Boid class, 299
capabilities of, 20
of CrowdEntity class, 306
declaring in IMonster class, 14
in physics simulation, 125

UpdateMatrices() function, 45, 81, 162
UpdateSemantics() function versus

CloneMesh(), 270
UpdateSkeleton() function, 162–163
UpdateSkinnedMesh() function, 57–58, 60
UpdateSpeech() function, calling, 224
upper arm bounding box, placing,

152–154. See also arm
UV barycentric coordinates, using with

hit position, 329
UV coordinates

advisory regarding normal maps, 279–280
calculating for decals, 339–346

V
Vanhatalo, Sami, 368, 397–402
VC++ directories

adding Bullet source folder to, 142–143
setting up, 15–16

vectors
calculating angles for, 116
calculating for decal UV coordinates,

340, 342
calculating scale factors for, 115
cross products of, 116
of integers, 13
MAX and MIN for AABB, 119
for OBB (Oriented Bounding Boxes),

119–120
of pointers, 13–14
transforming, 114–115
transforming directions of, 115–116
transforming with quaternions, 116–117
in vertex lighting, 262

velocity
calculating for particles, 131
after collision, 130
considering for rigid bodies, 126–127
storing for particles, 128

verbal messages, combining with
emotions, 195

Verlet integration
code sample, 130
formula, 128

versors, using with vectors, 115–116
vertex buffer, assigning to streams, 179
vertex constraints, support for, 61
vertex data, interpreting data input

stream to, 174–175
vertex declarations

adding components to, 266
changing, 270
compiling, 179
of Face class, 270–271
getting from mesh, 266
for skinned and morphed face, 381–382

vertex element types and usage, 176

Index 427

vertex formats
customizing for morphing animation,

174–175
method, 176
offset, 175
stream, 175
type, 175–176
usage, 176
UsageIndex, 177

vertex lighting, 256–258
versus normal mapping, 275
vectors in, 262

vertex shaders
adding input structure for vertex

declaration, 272
morphing, 181–182
for reading streams and outputs, 384–386
skeletal/morphing, 188–190
See also shaders

vertex size, checking in bytes, 332
vertex-based lighting, problem with,

256–258
vertices

blending, 61
combined weights for, 48
converting to Index Blended Vertices,

61–62
defining for morphing animation, 174
distance from hit point, 339
influence of bones on, 47–48
in morphing animation, 168
relationship to Matrix Palette, 62
in skeletal animation, 168
transformation matrix, 48
of triangles, 47

viseme keyframes, creating array of, 224
visemes

class for, 222
creating array of, 232–234
versus phonemes, 217, 221

templates for, 222
See also voice sample

Visual Studio Express 2008
downloading, 16
setting up projects in, 16–19

Visual Studio, starting with Bullet project,
141

voice sample
returning average amplitude of, 232
waveform and spectrograph of, 226
See also phonemes; visemes

Voodoo chipset, launch of, 4
vowels, phonemes for, 218
VS_OUTPUT structure, using with

normal mapping shader, 272–274

W
Wake, Alan. See Alan Wake character
WAVE format

chunk, 228
organization of, 227–228
resource for, 229
See also sound and speech libraries

WaveFile class code, 229
Web sites

Bullet Physics Library, 140
DirectX SDK, 15
Forsyth, Tom (blog), 262
hair animation, 351
Melody tool, 281
Normal Mapper tool, 280
OGG compression scheme, 227
Photoshop tool for normal maps, 281
SPEEX compression scheme, 227
Sumotori Dreams game, 138
Visual Studio Express 2008, 15
WAVE format, 229
See also resources

Weight track property, 86

428 Index

weights, using to blend morph targets, 168
werewolf, morph targets for, 184
window class, creating and registering,

22–23
window procedure code, 23
windows, clearing background color of, 26
WinMain() function, using, 21
WM_CREATE function, using, 23
WM_DESTROY function, using, 23
Wolfenstein 3D, release of, 4
words. See phonemes
world space hit location, calculating, 328
worlds

adding rigid bodies to, 145–146
describing with OBB, 119–124

wrinkle maps
for Alan Wake character, 402
resources, 293
using, 289–292

X
.x files

loading for ID3DXAllocateHierarchy,
44–45

loading multiple targets from, 200–201
loading of, 12
using, 27

Z
ZBrush Web site, 280

Index 429

This page intentionally left blank

GOT GAME?

See our complete list of beginner through advanced game development titles

online at www.courseptr.com or call 1.800.354.9706

Challenges for Game Designers

1-58450-580-X � $24.99

Game Graphics Programming

1-58450-516-8 � $64.99

Game Character Development

1-59863-465-8 � $44.99

Video Game Design Revealed

1-58450-562-1 � $39.99

www.courseptr.com

This page intentionally left blank

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following
terms and conditions. If, upon reading the following license agreement and no-
tice of limited warranty, you cannot agree to the terms and conditions set forth,
return the unused book with unopened disc to the place where you purchased
it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright
holder(s). You may transfer the enclosed disc only together with this license, and only if
you destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Course Technology to be free of physical defects in ma-
terials and workmanship for a period of sixty (60) days from end user’s purchase of the
book/disc combination. During the sixty-day term of the limited warranty, Course Tech-
nology will provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST EN-
TIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL COURSE
TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING
LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS
OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION WITH
OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES THAT MAY ARISE, EVEN IF COURSE TECHNOLOGY AND/OR THE AUTHOR
HAS PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL
OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF
MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREE-
DOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED
WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO
THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement between
you and Course Technology regarding use of the software.

	Acknowledgments
	About the Author
	Contents
	Introduction
	1 Introduction to Character Animation
	What Is Character Animation?
	A Brief History of Character Animation
	Morphing Animation and Skeletal Animation
	The Soldier
	Coding Conventions
	Conclusions
	Further Reading

	2 A Direct3D Primer
	DirectX 9 versus DirectX 10
	STL and the D3DX Library
	Setting Up a Project in Visual Studio Express 2008
	VC++ Directories
	Creating a New Project
	Linking DirectX Libraries

	Application Framework
	WinMain
	Creating the Window

	Basic Rendering
	Creating the DirectX Device
	Direct3D Rendering Loop
	Loading a Mesh
	Loading an Effect
	Rendering a Mesh with an Effect

	Conclusions
	Further Reading

	3 Skinned Meshes
	Skinned Meshes Overview
	Bone Hierarchies
	The D3DXFRAME Structure

	Loading a Bone Hierarchy
	The CreateFrame() Function
	The CreateMeshContainer() Function
	The DestroyFrame() Function
	The DestroyMeshContainer() Function
	The ID3DXAllocateHierarchy

	Applying a Mesh to the Bone Hierarchy
	Software Skinning Overview
	Hardware Skinning Overview
	Software Skinning Implementation
	Hardware Skinning Implementation

	Rendering Static Meshes in Bone Hierarchies
	Conclusions
	Chapter 3 Exercises
	Further Reading

	4 Skeletal Animation
	Keyframe Animation
	Animation Sets
	The ID3DXAnimationController Interface
	Loading the Animation Data

	Multiple Animation Controllers
	Conclusions
	Chapter 4 Exercises

	5 Advanced Skeletal Animation Techniques
	The Track Structure
	Blending Multiple Animations
	Compressing Animation Sets
	Animation Callback Events
	Motion Capture (Mocap)
	Optical Motion Capture Systems
	Magnetic Motion Capture Systems
	Mechanical Motion Capture Systems
	Comparison of the Different Mocap Systems
	Lapland Studio Interview

	Conclusions
	Chapter 5 Exercises
	Further Reading

	6 Physics Primer
	Introduction to Rigid Body Physics
	Forces
	The Effect of Forces on a Rigid Body
	Quaternions

	Describing the World
	The Oriented Bounding Box Class

	Physics Simulation
	Position, Velocity, and Acceleration
	The Particle
	The Spring

	Conclusions
	Chapter 6 Exercises
	Further Reading

	7 Ragdoll Simulation
	Introduction to the Bullet Physics Engine
	Integrating the Bullet Physics Library
	Download Bullet
	Build the Bullet Libraries
	Setting Up a Custom Direct3D Project
	Hello btDynamicsWorld

	Constraints
	Constructing the Ragdoll
	Updating the Character Mesh from the Ragdoll
	Getting a Bone’s Position from an OBB
	Getting a Bone’s Orientation from an OBB
	Updating the Bone Hierarchy

	Conclusions
	Chapter 7 Exercises

	8 Morphing Animation
	Basics of Morphing Animation
	Using Multiple Morph Targets

	Morphing Animation on the GPU
	Custom Vertex Formats
	Creating the Morph Vertex Declaration
	The Morphing Vertex Shader

	Combining Skeletal and Morphing Animation
	Skeletal/Morphing Vertex Format
	Skeletal/Morphing Vertex Shader

	Conclusions
	Chapter 8 Exercises

	9 Facial Animation
	Facial Animation Overview
	Facial Expressions

	The Eye of the Beholder
	The Face Class
	Loading Multiple Targets from One .X File
	Extracting Meshes from a D3DXFRAME Hierarchy
	Implementing the Face Class

	The Face Controller Structure
	Animation Channels

	Face Factory
	Conclusions
	Chapter 9 Exercises

	10 Making Characters Talk
	Phonemes
	Visemes
	Basics of Speech Analysis
	Sound Data
	The WAVE Format

	Automatic Lip-Syncing
	Conclusions
	Further Reading

	11 Inverse Kinematics
	Introduction to Inverse Kinematics
	Solving the IK Problem
	Look-At Inverse Kinematics
	Two-Joint Inverse Kinematics
	Conclusions
	Chapter 11 Exercises
	Further Reading

	12 Wrinkle Maps
	Introduction to Normal Mapping
	What Are Normal Maps?
	Encoding Normals as Color
	Putting the Normal Map to Use
	The TBN-Matrix
	Converting a Mesh to Support Normal Mapping

	The Normal Mapping Shader
	Creating Normal Maps
	Creating Normal Maps in Practice

	Specular Highlight
	Specular Maps

	Wrinkle Maps
	Conclusions
	Chapter 12 Exercises
	Further Reading

	13 Crowd Simulation
	Flocking Behaviors
	Boids

	Introduction to Crowd Simulation
	Smart Objects
	Following a Terrain
	Conclusions
	Chapter 13 Exercises
	Further Reading

	14 Character Decals
	Introduction to Decals
	Picking a Hardware-Rendered Mesh
	Creating Decal Geometry
	Calculating the Exact Hit Position
	Selecting Triangles for the Decal Mesh
	Copying the Skinning Information
	The CharacterDecal Class

	Calculating Decal UV Coordinates
	Conclusions
	Chapter 14 Exercises

	15 Hair Animation
	Hair Representation
	Hair Modeling
	The Control Hair Class
	The HairPatch Class
	Growing the Hair
	Rendering the Hair Patch

	Creating a Haircut
	Animating the Control Hairs
	The Hair Class
	Conclusions
	Chapter 15 Exercises
	Further Reading

	16 Putting It All Together
	Attaching the Head to the Body
	The Character Class
	Future Work
	Character Level-of-Detail
	Root Motion versus Non-Root Motion
	Animation Trees/Animation Graph
	Track Masks
	Separate Mesh and Animation Files

	Alan Wake Case Study
	Interview with Sami Vanhatalo, Senior Technical Artist
	Interview with Henrik Enqvist, Animation Programmer

	Final Thoughts
	Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

